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We continue the exercises.

Problem 11. Step functions are dense in . So, is the interval in𝐿1(0,  ∞) (0,  ∞) 𝑥 > 0 ℝ

and is the space with the Lebesgue measure and therefore, we want to show that step𝐿1

functions are dense. Now, what is a step function? A step function is a simple function.

So, is a step function, this is , but now are intervals. So this is a stepφ
𝑖=1

𝑘

∑ α
𝑖
 χ

𝐸
𝑖

𝐸
𝑖

function. Such functions are not just special simple functions, much smaller than simple

functions as a set and we want to show that this is also dense in .𝐿1(0,  ∞)

Solution. Let us take , continuous on . So, we are taking a fixed and finite𝑓 ≥ 0 𝑓 [𝑎,  𝑏]

interval. Then you take a partition of this℘ =  {𝑎 = 𝑥
0

< 𝑥
1

<.  .  .  . < 𝑥
𝑛

= 𝑏}

interval, and you set or let us say ) ( if you like ) is the maximum length, soµ(℘) 𝑙(℘

. So then you have,𝑙(℘) =  
1≤ 𝑖 ≤𝑛
max 𝑥

𝑖
− 𝑥

𝑖−1| |



if then . —(1)ξ
𝑖
 ∈  𝑥

𝑖−1
,  𝑥

𝑖[ ]  
𝑙(℘) 0

lim
→ 𝑖=1

𝑛

∑ 𝑓(ξ
𝑖
) (𝑥

𝑖
− 𝑥

𝑖−1
) →

𝑎

𝑏

∫ 𝑓(𝑥) 𝑑𝑥 

So, you take all possible partitions, the maximum should tend to , so the partitions0

become finer and finer, then the Riemann’s sums we know converge to the Riemann

integral, but we are dealing with continuous functions, therefore Riemann, Lebesgue

integral are all one and the same. Then, if you choose, let us fix , for instance, to beξ
𝑖

such that . You could choose anything you want to choose like𝑓(ξ
𝑖
) =  

𝑥∈[𝑥
𝑖−1

, 𝑥
𝑖
]

min 𝑓(𝑥)

this. So then, you have So, this is a step function and this will𝑓 ≥
𝑖=1

𝑛

∑ 𝑓(ξ
𝑖
) χ

[𝑥
𝑖
−𝑥

𝑖−1
]
 .

imply that I do not have to put the mod because I have
[𝑎,𝑏]
∫ |𝑓 −  ∑ 𝑓(ξ

𝑖
) χ

[𝑥
𝑖
−𝑥

𝑖−1
]
|𝑑𝑥 .  

taken the minimum, so

by condition (1),
[𝑎,𝑏]
∫ |𝑓 −  ∑ 𝑓(ξ

𝑖
) χ

[𝑥
𝑖
−𝑥

𝑖−1
]
| 𝑑𝑥 =   

[𝑎,𝑏]
∫ 𝑓 −  ∑ 𝑓(ξ

𝑖
) χ

[𝑥
𝑖
−𝑥

𝑖−1
]
𝑑𝑥 →  0

because the is nothing but the measure which is the length of the interval and∫ χ

therefore you get that this tends to 0. So, you have in∑ 𝑓(ξ
𝑖
) χ

[𝑥
𝑖
−𝑥

𝑖−1
]
 → 𝑓  𝐿1(𝑎,  𝑏).

Now, if you take to be an arbitrary continuous function, then you write as𝑓 𝑓 = 𝑓+ − 𝑓−

and then, for each of them you can find a step function and therefore there exists a step

function in . So now, if , a , continuousφ
𝑛

→ 𝑓 𝐿1(𝑎,  𝑏) 𝑓 ∈ 𝐿1(0,  ∞)  ∃ 𝑔 ∈  𝐶
𝑐
(0,  ∞)

function with compact support, such that .||𝑓 −  𝑔||
1

< ϵ
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Then, let , then a step function such that .𝑠𝑢𝑝𝑝(𝑔) ⊂ [𝑎,  𝑏] ∃ ϕ || 𝑔 − ϕ||
1

< ϵ

Therefore, that implies that , and that proves that step functions are||𝑓 −  ϕ||
1

< 2 ϵ

dense.

(Refer Slide Time: 06:54)

Problem 12. This is one of the versions of the Riemann-Lebesgue Lemma.

Let bounded and measurable, such that isℎ :  (0,  ∞) → ℝ
𝑐 ∞
lim
→

1
𝑐

0

𝑐

∫ ℎ(𝑡) 𝑑𝑡 =  0. ℎ

bounded. So on any finite interval, you can integrate it, it is integrable. You are taking the

average, so you are taking the integral over dividing by the length of the interval, so𝑐

that is nothing but the average. So, the average of this function, as the interval becomes

larger and larger, tends to 0.



(a) Show that if , then .𝑓 = χ
[𝑎, 𝑏]

 [𝑎,  𝑏] ⊂ (0,  ∞)
ω ∞
lim
→ 0

∞

∫ 𝑓(𝑡) ℎ(ω𝑡) 𝑑𝑡 =  0 

(b) Deduce the same result .  ∀  𝑓 ∈ 𝐿1(0,  ∞)

Solution. (a) . So, what is ?𝑓 = χ
[𝑎, 𝑏]

 
0

∞

∫ 𝑓(𝑡) ℎ(ω𝑡) 𝑑𝑡

because
0

∞

∫ 𝑓(𝑡) ℎ(ω𝑡) 𝑑𝑡 =  
𝑎

𝑏

∫ ℎ(ω𝑡) 𝑑𝑡 𝑓 = χ
[𝑎, 𝑏]

= this is just a change of variable1
ω

𝑎ω

𝑏ω

∫ ℎ(𝑠) 𝑑𝑠

= 𝑏
𝑏 ω

0

𝑏ω

∫ ℎ(𝑠) 𝑑𝑠 −  𝑎
𝑎 ω

0

𝑎ω

∫ ℎ(𝑠) 𝑑𝑠

This gives the average and as , , so each term by the givenω → ∞  𝑎ω,  𝑏ω → ∞ → 0 ,

hypothesis and therefore you have . So that proves the part (a).
0

∞

∫ 𝑓(𝑡) ℎ(ω𝑡) 𝑑𝑡 →  0
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(b) (a) true for step functions. It is true for every characteristic function and therefore⇒

by linearity, it is true for any linear combination of them, so it is true for step functions.

If , then a step function such that by the previous exercise.𝑓 ∈ 𝐿1 ∃ 𝑔 ||𝑓 − 𝑔||
1

< ϵ



So,  |
0

∞

∫ 𝑓(𝑡) ℎ(ω𝑡) 𝑑𝑡 | ≤  
0

∞

∫ |𝑓(𝑡) − 𝑔(𝑡)| |ℎ(ω𝑡)| 𝑑𝑡 +  |
0

∞

∫ 𝑔(𝑡) ℎ(ω𝑡) 𝑑𝑡 | 

In the first term, is a bounded measurable function, so . Now, you getℎ |ℎ| ≤ 𝑀

is the norm and therefore . So that first term and the second∫ |𝑓 − 𝑔| 𝐿1 <  ϵ < 𝑀 ϵ

term, of course is the step function, therefore as𝑔 
0

∞

∫ 𝑔(𝑡) ℎ(ω𝑡) 𝑑𝑡  →  0 ω →  ∞ .

Therefore, you can make this arbitrarily small for and consequently, you haveω →  ∞

the result.

Problem 13. (a) Let be a finite interval and and (𝑎,  𝑏) ⊂ (0,  ∞) 𝑓
𝑛
(𝑡) =  cos(𝑛𝑡) 

Then weakly and weakly in𝑔
𝑛
(𝑡) = sin(𝑛𝑡). 𝑓

𝑛
→ 0  𝑔

𝑛
→ 0  𝐿𝑝(𝑎,  𝑏)  ∀ 1 ≤ 𝑝 < ∞

.
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Solution. is a finite interval. So, because it is a finite(𝑎,  𝑏) 𝐿𝑝(𝑎,  𝑏) ⊂  𝐿1(𝑎,  𝑏)

measure space and therefore any , bigger is continuously embedded in a smaller .𝐿 𝐿𝑝 𝐿𝑝

So, now you take ̃extension by outside to . So you extend it, so then𝑓
~

0 (𝑎,  𝑏) (0,  ∞ )

you have . So, if you take then what is ?𝑓
~

∈ 𝐿1(0,  ∞) ℎ(𝑡) =  cos(𝑡) 1
𝑐

0

𝑐

∫ cos(𝑡) 𝑑𝑡
||||

||||

as .1
𝑐

0

𝑐

∫ cos(𝑡) 𝑑𝑡
||||

||||
 =  sin 𝑐

𝑐
|| || ≤  1

|𝑐|  → 0 𝑐 → ∞

Similarly, as .1
𝑐

0

𝑡

∫ sin(𝑡) 𝑑𝑡
||||

||||
 ≤  1−cos(𝑐)

𝑐
|| || ≤ 2

|𝑐|  →  0 𝑐 → ∞

So, , satisfy the previous properties of the functionℎ(𝑡) =  cos(𝑡) ℎ(𝑡) =  sin(𝑡) ℎ

given in the previous exercises.
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By exercise 12, we have and ,
0

∞

∫ 𝑓
~

 cos(𝑛𝑡) 𝑑𝑡 
0

∞

∫ 𝑓
~

 sin(𝑛𝑡) 𝑑𝑡 → 0 ∀ 𝑓 ∈ 𝐿𝑝*

that means, and such and1 ≤ 𝑝 ≤ ∞
𝑎

𝑏

∫ 𝑓(𝑡) cos(𝑛𝑡) → 0
𝑎

𝑏

∫ 𝑓(𝑡) sin(𝑛𝑡) → 0 ∀ 𝑓

i.e. and weakly .cos(𝑛𝑡) → 0 sin(𝑛𝑡) → 0 ∀ 1 ≤ 𝑝 ≤ ∞

(b) What is the weak limit of ?cos2(𝑛𝑡)

, and that of course weakly,cos2(𝑛𝑡) =  1+cos(2𝑛𝑡)
2 cos(𝑛𝑡) → 0

so goes weakly to . So, here is an example about weak convergence. Ifcos2(𝑛𝑡)  1
2 𝑓

converges weakly, and converges weakly, need not converge weakly to the𝑓
𝑛

𝑔
𝑛

𝑓
𝑛
𝑔

𝑛

same limit. It may not even converge, weakly. So when you are doing nonlinear

operations, you have to be very careful. Here, goes to 0 but does notcos(𝑛𝑡)    cos2(𝑛𝑡)

go weakly to 0, it goes weakly to . So, this is an important point to note and this is an1
2

example of how you should be careful when dealing with nonlinear functions of weakly

convergent sequences.
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Problem 14. A trigonometric series : — (*)
𝑎

0

2 +
𝑛=1

∞

∑ 𝑎
𝑛

cos(𝑛𝑡) +  𝑏
𝑛 

sin(𝑛𝑡)

Typically the Fourier series are trigonometric series. So, any such series written like this

are called trigonometric series. So, rewrite it in it’s amplitude phase form. Namely,

is the phase, is called the amplitude.
𝑎

0

2 +
𝑛=1

∞

∑ 𝑑
𝑛

cos(𝑛𝑡 − ϕ
𝑛
) ϕ

𝑛
𝑑

𝑛

Solution: All you need to do is put and𝑎
𝑛

=  𝑑
𝑛

cos(ϕ
𝑛
) 𝑏

𝑛
=  𝑑

𝑛
sin(ϕ

𝑛
)

From this you get . So, you can compute , the positive square root𝑑
𝑛

2 = 𝑎
𝑛

2 + 𝑏
𝑛

2 𝑑
𝑛

and once you know , from this you can, whichever relation you like, you can take𝑑
𝑛

or or from whichever, from these three equations youtan(ϕ
𝑛
) =

𝑏
𝑛

𝑎
𝑛

cos(ϕ
𝑛
) sin(ϕ

𝑛
)

can easily compute what is .ϕ
𝑛

(b) Cantor-Lebesgue Theorem. Let be a set of positive Lebesgue measure. If a𝐸 ⊂ ℝ

trigonometric series (*) converges over , that means at every point in it converges,𝐸 𝐸

then and So, the coefficients of the trigonometric series have to go to 0,𝑎
𝑛

→ 0 𝑏
𝑛

→ 0.

that is a necessary condition for the convergence on a set of positive measure.
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Solution. Without loss of generality, we can assume that the Lebesgue measure of is𝐸

strictly finite, because it converges over a set , so if necessary you take a subset of𝐸

positive, finite measure, there also it is going to converge. So, there is no problem in

assuming that the measure is finite. Series convergence means the general term has to go

to 0, so this implies that as . That is the general term of any𝑑
𝑛

cos(𝑛𝑡 − ϕ
𝑛
) → 0 𝑛 → ∞

convergent series has to go to 0. So that is why, we wrote it as (*) because we had two

terms, we combined it and wrote an amplitude phase form so there is only 1 term and so

it is , has to go to 0. So, has to go to 0.∑ α
𝑛

α
𝑛

𝑑
𝑛

cos(𝑛𝑡 − ϕ
𝑛
)

So, this can happen in 2 ways. (i) . , so if , then and𝑑
𝑛

→ 0 𝑑
𝑛

2 = 𝑎
𝑛

2 + 𝑏
𝑛

2 𝑑
𝑛

→ 0 𝑎
𝑛

𝑏
𝑛

automatically go to 0. So, . So, this is what we need. So assume if𝑑
𝑛

→ 0 ⇒  𝑎
𝑛
 ,  𝑏

𝑛
→ 0 

possible, does not go to 0. Then, an and a subsequence such that 𝑑
𝑛

∃ ϵ > 0 {𝑑
𝑛

𝑘

} 

. So, it stays away from . So now, if does not go to 0, the general term𝑑
𝑛

𝑘

≥ ϵ > 0 0 𝑑
𝑛

𝑘

anyway goes to 0, so this implies that has to go to .cos(𝑛
𝑘
𝑡 − ϕ

𝑛
𝑘

) 0   ∀𝑡 ∈ 𝐸



So, | is finite. So constant functions are integrable. So, and you have𝐸|

integrable, and|cos2(𝑛
𝑘
𝑡 − ϕ

𝑛
𝑘

)| ≤ 1 →  

cos(𝑛
𝑘
𝑡 − ϕ

𝑛
𝑘

) → 0 ⇒
𝐸
∫ cos2(𝑛

𝑘
𝑡 − ϕ

𝑛
𝑘

)𝑑𝑡 → 0 ⇒
𝐸
∫

1+cos 2(𝑛
𝑘
𝑡−ϕ

𝑛
𝑘

)

2 𝑑𝑡 → 0
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Let us look at .cos  (2𝑛
𝑘 

𝑡)

So,
𝐸
∫ cos  2(𝑛

𝑘
𝑡 − φ

𝑛
𝑘

)𝑑𝑡 = cos(2φ
𝑛

𝑘

)
𝐸
∫ cos  (2𝑛

𝑘
𝑡)𝑑𝑡 + sin(2φ

𝑛
𝑘

)
𝐸
∫ sin(2𝑛

𝑘
𝑡)𝑑𝑡



= cos(2φ
𝑛

𝑘

)
𝑅
∫ χ

𝐸
(𝑡) cos  (2𝑛

𝑘
𝑡)𝑑𝑡 + sin(2φ

𝑛
𝑘

)
𝑅
∫ χ

𝐸
(𝑡) sin  (2𝑛

𝑘
𝑡)𝑑𝑡

Now, is of finite measure. Therefore and ,|𝐸| χ
𝐸

∈ 𝐿1(𝑅) | cos(2φ
𝑛

𝑘

)| ≤ 1

. Therefore, each of these terms has to go to 0 by exercise 13 and this| sin(2φ
𝑛

𝑘

)| ≤ 1

implies that and that is a contradiction because
𝐸
∫ cos  2(𝑛

𝑘
𝑡 − φ

𝑛
𝑘

)𝑑𝑡 → 0

. Now, means
𝐸
∫

1+cos 2(𝑛
𝑘
𝑡−φ

𝑛
𝑘

)

2 𝑑𝑡 → 0
𝐸
∫ cos  2(𝑛

𝑘
𝑡 − φ

𝑛
𝑘

)𝑑𝑡 → 0
𝐸
∫

1+cos 2(𝑛
𝑘
𝑡−φ

𝑛
𝑘

)

2 𝑑𝑡

has to go to 1/2, which is not, we have shown that it goes to 0 and therefore it is not

possible and therefore it is a contradiction, so this implies 𝑑
𝑛

→ 0 ⇒  𝑎
𝑛
 ,  𝑏

𝑛
→ 0 


