Functional Analysis
Professor. S. Kesavan
Department of Mathematics
The Institute of Mathematical Sciences
Lecture No. 47

Exercises Part —3
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We continue the exercises.

Problem 11. Step functions are dense in Ll(O, ). So, (0, o) is the interval x > 0 in R

1. .
and L is the space with the Lebesgue measure and therefore, we want to show that step

functions are dense. Now, what is a step function? A step function is a simple function.

k

So, ¢ is a step function, this is ) o X but now EL_ are intervals. So this is a step
i=1 i

function. Such functions are not just special simple functions, much smaller than simple

. .. .1
functions as a set and we want to show that this is also dense in L™ (0, o0).

Solution. Let us take f > 0, f continuous on [a, b]. So, we are taking a fixed and finite

interval. Then you take a partition o = {a = X, <x <....<x = b} of this

interval, and you set p(%) or let us say [() ( if you like ) is the maximum length, so

(o) = max |x_ - X | So then you have,
1<isn ! i i-1



n b
ifEi € [xi_l, xi] then lim ) f(Ei) (xi — xi—l) - [ f(x) dx.—(1)
() =0 i=1 p

So, you take all possible partitions, the maximum should tend to 0, so the partitions
become finer and finer, then the Riemann’s sums we know converge to the Riemann
integral, but we are dealing with continuous functions, therefore Riemann, Lebesgue

integral are all one and the same. Then, if you choose, let us fix Ei, for instance, to be

such that f (Ei) = xe%nin : f(x). You could choose anything you want to choose like

i-1 xi

n

this. So then, you have f > ¥ f(§) Xpe -

E So, this is a step function and this will
i=1 i i1

lf — Xf (Ei) X ]|dx . I do not have to put the mod because I have

i—1

imply that |
[a.b]

taken the minimum, so

fb

TIF = @, ldx = T f - 2f@x,

dx — 0 by condition (1),
(@) -

5

]

because the [ is nothing but the measure which is the length of the interval and

therefore you get that this tends to 0. So, you have )’ f (Ei) X, ;) f in Ll(a, b).

X —X
i i—-1

Now, if you take f to be an arbitrary continuous function, then you write as f = f - f
and then, for each of them you can find a step function and therefore there exists a step
. .1 . 1 .
function ¢ - fin L (a, b). Sonow,if f € L (0, ©),3ag € CC(O, 0), continuous

function with compact support, such that |[|f — g|| < €
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Then, let supp(g) < [a, b], then 3 a step function ¢ such that || g — | |1 < e

Therefore, that implies that ||f — ]| L < 2 €, and that proves that step functions are
dense.
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Problem 12. This is one of the versions of the Riemann-Lebesgue Lemma.

C
Let h: (0, c0) = R bounded and measurable, such that lim % [ht)dt = 0. h is

c>ow 0
bounded. So on any finite interval, you can integrate it, it is integrable. You are taking the
average, so you are taking the integral over ¢ dividing by the length of the interval, so
that is nothing but the average. So, the average of this function, as the interval becomes

larger and larger, tends to 0.



(a) Show thatif f = x . [a, b] < (0, @) then lim [ f(t) h(wt) dt = 0.

w—o 0

(b) Deduce the same result V f € Ll(O, ).

Solution. (a) f = X(a,b

K So, what is [ f(t) h(wt) dt ?
0

) b
[ f®) h(wt) dt = [ h(wt)dt because f = Xia, 1
0 a ’

bw

= % [ h(s) ds this is just a change of variable

aw

bw aw
-t _ —a
=% { h(s) ds { h(s) ds

a w

This gives the average and as w = ©, aw, bw — o0, so each term = 0, by the given

hypothesis and therefore you have | f(t) h(wt) dt — 0. So that proves the part (a).
0
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(b) (a) = true for step functions. It is true for every characteristic function and therefore

by linearity, it is true for any linear combination of them, so it is true for step functions.

If f e Ll, then 3 a step function g such that ||f — g]| |1 < € by the previous exercise.



So, |/ f(t) h(wt) dt | < {If(t) — g@®] k(@] dt + |[ g(t) h(wt) dt |
0 0

In the first term, h is a bounded measurable function, so |h| < M. Now, you get

[If — glis the L' norm and therefore < €. So that first term < M e and the second

[e¢]

term, of course gis the step function, therefore [ g(t) h(wt)dt — 0 as w — oo.
0

Therefore, you can make this arbitrarily small for ® — oo and consequently, you have

the result.

Problem 13. (a) Let (a, b) c (0, o) be a finite interval and fn(t) = cos(nt) and

gn(t) = sin(nt). Then fn — 0 weakly and g, - 0 weakly in Lp(a, by Vi<p < w
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Solution. (a, b) is a finite interval. So, Lp(a, b) c Ll(a, b) because it is a finite
measure space and therefore any L, bigger L’ is continuously embedded in a smaller L’

So, now you take f extension by 0 outside (a, b) to (0, o). So you extend it, so then

~ c
you have f€ Ll(O, ) . So, if you take h(t) = cos(t) then what is %f cos(t) dt|?
0

sin ¢
c

< ﬁ — 0asc — oo.

c
‘%f cos(t) dt
0

Sl—zl — (Qasc — oo,
c

<

Similarly, |1‘—“

c

t
— [ sin(¢) dt
0

So, h(t) = cos(t), h(t) = sin(t) satisfy the previous properties of the function h

given in the previous exercises.
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By exercise 12, we have ff cos(nt) dt and ff sin(nt) dt -0 Vf € i ,
0 0

b b

1 < p < oo that means, [ f(t) cos(nt) — 0 and [ f(t) sin(nt) — 0 V such f and
a a

i.e. cos(nt) = O0andsin(nt) - Oweakly V 1 <p < oo,

(b) What is the weak limit of cosz(nt)?

1+cos(2nt)

5 , and that of course cos(nt) — 0 weakly,

2
cos (nt) =

SO cosz(nt) goes weakly to % So, here is an example about weak convergence. If f
converges weakly, f and g converges weakly, f g need not converge weakly to the
same limit. It may not even converge, weakly. So when you are doing nonlinear
operations, you have to be very careful. Here, cos(nt) goes to 0 but cosz(nt) does not
go weakly to 0, it goes weakly to % So, this is an important point to note and this is an
example of how you should be careful when dealing with nonlinear functions of weakly
convergent sequences.
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a (00}
Problem 14. A trigonometric series : TO + ) a cos(nt) + bn sin(nt) —(*)

n=1

Typically the Fourier series are trigonometric series. So, any such series written like this

are called trigonometric series. So, rewrite it in it’s amplitude phase form. Namely,

% + ) dn cos(nt — q>n) cl)n is the phase, dn is called the amplitude.

n=1

Solution: All you need to do is put a = dn cos(cbn) and bn = dn sin(cl)n)

. 2 2 2 .
From this you get dn =a + bn . So, you can compute dn, the positive square root

and once you know dn, from this you can, whichever relation you like, you can take

b
tan(cl)n) = a—" or Cos(cl)n) or sin(cl)n) from whichever, from these three equations you

n

can easily compute what is cl)n.

(b) Cantor-Lebesgue Theorem. Let E c R be a set of positive Lebesgue measure. If a
trigonometric series (*) converges over E, that means at every point in E it converges,

then a - 0 and bn — 0. So, the coefficients of the trigonometric series have to go to 0,
that is a necessary condition for the convergence on a set of positive measure.
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Solution. Without loss of generality, we can assume that the Lebesgue measure of E is
strictly finite, because it converges over a set E, so if necessary you take a subset of
positive, finite measure, there also it is going to converge. So, there is no problem in
assuming that the measure is finite. Series convergence means the general term has to go

to 0, so this implies that dn cos(nt — q>n) — 0 as n — oo. That is the general term of any
convergent series has to go to 0. So that is why, we wrote it as (*) because we had two

terms, we combined it and wrote an amplitude phase form so there is only 1 term and so

itis ) a, anhas to go to 0. So, dn cos(nt — cl)n) has to go to 0.

So, this can happen in 2 ways. (i)d — 0. d ‘=q’ + b 2, soifd — 0,thena andb
n n n n n n n
automatically go to 0. So, dn -0= a, bn — 0. So, this is what we need. So assume if

possible, dn does not go to 0. Then, 3 an € > 0 and a subsequence {dn} such that
k

dn > € > 0. So, it stays away from 0. So now, if dn does not go to 0, the general term
k k

anyway goes to 0, so this implies that cos(nkt — cl)n )hastogoto 0 Vt € E.
k



So, |E| is finite. So constant functions are integrable. So, and you have

|cosz(nkt — cl)n)l < 1 — integrable, and
k

2 1+cos Z(nkt—d)n )
cos(nkt—q)n)—>0=>fcos(nkt—q)n)dt—>0=»f —dt - 0
K E K E

2
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Let us look at cos (an t).

k

So, [ cos Z(nkt — @ )dt = cos(Z(pn)fcos (ant)dt + sin(2<pn )fsin(ant)dt
E k E k E



= cos(Z(pn ) fxg) cos (ant)dt + sin(Z(pn)fx(Et) sin (ant)dt
k R kR

Now, |E| is of finite measure. Therefore XEELl(R) and |cos(2(pn)| <1,
k

| sin(Z(pn )| < 1. Therefore, each of these terms has to go to 0 by exercise 13 and this
k

implies that [cos 2(nt —¢ )dt -0 and that is a contradiction because
£ k n,

1+cos 2(nkt—(pn )
———dt —» 0. Now, [ cos 2(nt — @ )dt >0 means Il
E E i E

1+cos Z(nkt—q)nk)

———dt

has to go to 1/2, which is not, we have shown that it goes to 0 and therefore it is not

possible and therefore it is a contradiction, so this implies dn - 0= a, bn -0



