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Problem 5. Let measurable functions. We say that converges to in measure, this𝑓
𝑛

𝑓
𝑛

𝑓

is one kind of convergence, . This set is∀ϵ > 0,      
𝑛 ∞
lim
→

µ({|𝑓
𝑛

− 𝑓| ≥ ϵ}) = 0

measurable so its measure has to go to 0. So, if in show that in .𝑓
𝑛

→ 𝑓 𝐿
𝑝
(µ) 𝑓

𝑛
→ 𝑓 µ



(Refer Slide Time: 01:36)

Solution. Let .𝐸
𝑛
(ϵ) =  {|𝑓

𝑛
− 𝑓| ≥ ϵ}

Now, (as we are taking a smaller set
𝑋
∫ |𝑓

𝑛
− 𝑓|𝑝𝑑µ ≥

𝐸
𝑛
(ϵ)
∫  |𝑓

𝑛
− 𝑓|𝑝 𝑑µ ≥ ϵ𝑝 µ(𝐸

𝑛
(ϵ))

and the integrand is nonnegative).

Therefore, , i.e. in .µ(𝐸
𝑛
(ϵ)) ≤ 1

ϵ𝑝
𝑋
∫ |𝑓

𝑛
− 𝑓|𝑝𝑑µ → 0 𝑓

𝑛
→ 𝑓 µ

This kind of argument you have seen in measure theory or probability theory, something

called Chebyshev’s inequality, is almost proved in the same fashion. So, this is the

same kind of proof that one uses and the very useful argument where you use just the fact

that the integral, if you take a nonnegative integrand, then the integral over the smaller set

is smaller.

Problem 6. Let and such that, (i) for almost every1 < 𝑝 < ∞ 𝑓: 𝑋 × 𝑋 → ℝ

integrable,  (ii)𝑦,  𝑥 ↦𝑓𝑦(𝑥) = 𝑓(𝑥, 𝑦)     𝑝
𝑋
∫ ||𝑓𝑦||

𝑝
 𝑑µ(𝑦) <  ∞.

Define, i.e., this is a combination of two variables. Show that,𝑔(𝑥) =
𝑋
∫ 𝑓(𝑥,  𝑦) 𝑑µ(𝑦)



and .𝑔 ∈ 𝐿𝑝(µ) ||𝑔||
𝑝

≤
𝑋
∫ ||𝑓𝑦||

𝑝
 𝑑µ
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Solution. This is an argument very similar to our proof of Young’s inequality.

Let . So, this is the conjugate exponent. Then,ϕ ∈ 𝐿𝑝*(µ)

[as everything is non-negative so you can|∫ ϕ𝑔 𝑑µ| ≤
𝑋

𝑥

∫
𝑋

𝑦

∫ |ϕ(𝑥)||𝑓(𝑥, 𝑦)| 𝑑µ(𝑦) 𝑑µ(𝑥)

interchange the order of integration]

|∫ ϕ𝑔 𝑑µ| ≤
𝑋

𝑥

∫
𝑋

𝑦

∫ |ϕ(𝑥)||𝑓(𝑥, 𝑦)| 𝑑µ(𝑦) 𝑑µ(𝑥) =
𝑋

𝑦

∫
𝑋

𝑥

∫ |ϕ(𝑥)||𝑓𝑦(𝑥)| 𝑑µ(𝑥) 𝑑µ(𝑦)

Here, is in , is in , by the Holder inequality,𝑓𝑦 𝐿𝑝 ϕ 𝐿𝑝*

𝑋
𝑦

∫
𝑋

𝑥

∫ |ϕ(𝑥)||𝑓𝑦(𝑥)| 𝑑µ(𝑥) 𝑑µ(𝑦) ≤
𝑋

𝑦

∫ ||𝑓𝑦||
𝑝  

||ϕ||
𝑝* 

𝑑µ(𝑦) = ||ϕ||
𝑝* 

𝑋
𝑦

∫ ||𝑓𝑦||
𝑝  

𝑑µ(𝑦) < ∞.
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They have given that so therefore is a continuous1 < 𝑝 < ∞ ϕ ∈ 𝐿𝑝*(µ) ϕ → ∫ ϕ 𝑔

linear functional on and therefore this implies that and therefore  𝐿𝑝*(µ) 𝑔 ∈ 𝐿𝑝(µ)

So, it is just exactly like we did for Young’s inequality. So, we||𝑔||
𝑝

≤
𝑋
∫ ||𝑓𝑦||

𝑝
 𝑑µ(𝑦).

have used the duality argument and then we do this problem.
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Problem 7. Let (continuous functions with compact support in ). Define𝑔 ∈ 𝐶
𝑐
(ℝ) ℝ

Then of course, and therefore continuous with respect toϕ(𝑔) = 𝑔(0), |ϕ(𝑔)| ≤ ||𝑔||
∞

the norm. Therefore, by Hahn Banach, such that, . Of𝐿∞ ∃ϕ 
~

∈ (𝐿∞(ℝ))* ϕ 
~

|
𝐶

𝑐
(ℝ)

= ϕ

course, the norm will be preserved, and so on. Show that does not come from ,ϕ 
~

𝐿1(ℝ)

that is there does not exist , such that This𝑓 ∈ 𝐿1(ℝ) ϕ 
~

(𝑔) =
𝑋
∫ 𝑓𝑔 𝑑𝑥 ∀𝑔 ∈ 𝐿∞(ℝ).

is another proof that are not reflexive. We give another type of(𝐿∞)* ≠ 𝐿1 ⇒ 𝐿1,  𝐿∞ 

proof for that. So here, we are directly producing a linear functional which does not come

from it.
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Solution. Assume such that∃ 𝑓 ∈ 𝐿1(ℝ) ϕ 
~

(𝑔) =
𝑋
∫ 𝑓𝑔 𝑑𝑥 ∀𝑔 ∈ 𝐿∞(ℝ).

So now, we take 𝑔
𝑛

= 1 + 𝑛𝑥,    𝑥 ∈ [− 1/𝑛,  0]

= 1 − 𝑛𝑥,     𝑥 ∈ [0,  1/𝑛]

,    otherwise.=  0



The function is a roof type function, so it is 0 for and , at (0, 1/n) it 𝑥 ≤− 1/𝑛 𝑥 ≥ 1/𝑛

has value 1. Inside it takes kind of value. So, then And[− 1
𝑛 ,  1

𝑛 ],  1 ± 𝑛𝑥 𝑔
𝑛

∈ 𝐶
𝑐
(ℝ).

you have On the other hand, you have,ϕ 
~

(𝑔
𝑛
) = ϕ(𝑔

𝑛
) = 𝑔

𝑛
(0) = 1.  

|
ℝ
∫ 𝑓 𝑔

𝑛
𝑑𝑥| = |

−1/𝑛

1/𝑛

∫ 𝑓 𝑔
𝑛
𝑑𝑥| ≤

−1/𝑛

1/𝑛

∫ |𝑓| 𝑑𝑥.
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Now, and . The Lebesgue measure is just the𝑓 ∈ 𝐿1(ℝ) µ([− 1/𝑛,  1/𝑛]) = 2/𝑛 → 0

length of the interval which goes to 0, therefore by absolute continuity of the Lebesgue

integral with respect to the Lebesgue measure, we have On|
ℝ
∫ 𝑓 𝑔

𝑛
𝑑𝑥|≤

−1/𝑛

1/𝑛

∫ |𝑓| 𝑑𝑥 → 0.

the other hand, you have , so these two cannot be equal. So, you have aϕ 
~

(𝑔
𝑛
) = 1 

contradiction. And that proved the result.
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Problem 8. Let be a vector. Define i.e. just the translation.ℎ ∈ ℝ𝑁 𝑓
ℎ
(𝑥) = 𝑓(𝑥 + ℎ)

The lebesgue measure is translation invariant, so . Show that if𝑓 ∈ 𝐿𝑝 ⇒ 𝑓
ℎ

∈ 𝐿𝑝

𝑓 ∈ 𝐿𝑝(ℝ𝑁) ⇒ ||𝑓 − 𝑓
ℎ
||

𝑝
→ 0 𝑎𝑠 ℎ → 0,   1 ≤ 𝑝 < ∞.
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Solution. Let . This implies it is a continuous function with compact support𝑔 ∈ 𝐶
𝑐
(ℝ𝑁)

is uniformly continuous. So, given such that, 𝑔 ϵ > 0,    ∃ δ > 0,

(because of the uniform continuity and|ℎ| < δ ⇒ |𝑔(𝑥 + ℎ) − 𝑔(𝑥)| < ϵ  ∀ 𝑥 ∈ℝ𝑁

note that . So,||ℎ|| =  |ℎ| 𝑖𝑛 ℝ𝑁) ||𝑔 − 𝑔
ℎ
||

𝑝
𝑝 = ∫ |𝑔(𝑥 + ℎ) − 𝑔(𝑥)|𝑝 𝑑𝑥 

I should integrate this over all of . But has compact support and support is justℝ𝑁 𝑔 𝑔
ℎ

translated by and which can be assumed without loss of generality to be lessℎ ℎ < δ

than 1 and therefore the support of these functions will be contained in . So,𝐾 + 𝐵‾(0; 1)

compact. So, will be non-zero indefinitely, it will be𝐾 =  𝑠𝑢𝑝𝑝 𝑔 |𝑔(𝑥 + ℎ) − 𝑔(𝑥)|𝑝 

0 outside . And so,𝐾 + 𝐵‾(0; 1)

and therefore this||𝑔 − 𝑔
ℎ
||

𝑝
𝑝 = ∫ |𝑔(𝑥 + ℎ) − 𝑔(𝑥)|𝑝 𝑑𝑥 ≤ ϵ𝑝 |𝐾 + 𝐵‾(0; 1)| ,

implies that . So, this is true for any .||𝑔 − 𝑔
ℎ
||

𝑝
→ 0 ℎ
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So now, let , we have, such that Then,𝑓 ∈ 𝐿𝑝(ℝ𝑁) ∃ 𝑔 ∈ 𝐶
𝑐 

(ℝ𝑁) ||𝑓 − 𝑔||
𝑝

< ϵ/3 .  

such that And then what about∃ δ > 0 |ℎ| < δ ⇒ ||𝑔 − 𝑔
ℎ
||𝑝 < ϵ/3. ||𝑓

ℎ
− 𝑔

ℎ
||

𝑝
?

You are translating both , by the translation invariance of Lebesgue measure,𝑓  & 𝑔

Therefore,||𝑓
ℎ

− 𝑔
ℎ
||

𝑝
=  ||𝑓 − 𝑔||

𝑝
< ϵ/3.

||𝑓 − 𝑓
ℎ
||

𝑝
≤ ||𝑓 − 𝑔||

𝑝
+ ||𝑔 − 𝑔

ℎ
||

𝑝
+ ||𝑔

ℎ
− 𝑓

ℎ
||

𝑝
< ϵ

(as each is less than )  for all and therefore, that proves the statement.ϵ/3 |ℎ| < δ
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Problem 9. As an application of this result, we take , then𝑓 ∈ 𝐿1(ℝ)

So, we are taking a complex function, of course, complex
ℝ
∫ 𝑒𝑖ω𝑡𝑓(𝑡)𝑑𝑡 → 0 𝑎𝑠 ω → ∞.

function is the same Lebesgue integrable. If you take the modulus power , should be𝑝

integrable, as has modulus is 1 and therefore this is still integrable and𝑓 ∈ 𝐿1,  𝑒𝑖ω𝑡 

therefore this is well defined. Let us define . Now, you have𝑔(ω) =
ℝ
∫ 𝑒𝑖ω𝑡𝑓(𝑡)𝑑𝑡

and So, I am going to multiply by -1. So,𝑒𝑖 π =− 1 𝑒−𝑖 π =− 1. − 𝑔(ω) =



[ I make a change
ℝ
∫ 𝑒𝑖ω𝑡− 𝑖 π 𝑓(𝑡)𝑑𝑡 =

ℝ
∫ 𝑒𝑖 ω(𝑡 −  π/ω) 𝑓(𝑡)𝑑𝑡 =

ℝ
∫ 𝑒𝑖 ω𝑡 𝑓(𝑡 + π/ω) 𝑑𝑡.  

of variable]. Therefore,

[as2|𝑔(ω)| ≤ |
ℝ
∫ 𝑒𝑖ω𝑡(𝑓(𝑡) − 𝑓(𝑡 + π/ω)) 𝑑𝑡| ≤ ||𝑓 −  𝑓

π/ω
||

1
→ 0 𝑎𝑠 ω → ∞

and as ] by exercise 8.|𝑒𝑖ω𝑡| = 1 π/ω → 0 ω → ∞

the translation, this is by exercise 8.ℎ
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Corollary: If , and as𝑓 ∈ 𝐿1(ℝ)
ℝ
∫ 𝑓(𝑡) cos(𝑛𝑡)𝑑𝑡 → 0

ℝ
∫ 𝑓(𝑡) sin(𝑛𝑡) 𝑑𝑡 → 0 𝑛 → ∞.

That is the corollary of the previous exercise if you take real and imaginary parts of that

integral.

Problem 10. Let in is a bounded sequence in . Show that it does𝑓
𝑛

= χ
[𝑛, 𝑛+1]

 ℝ 𝐿1(ℝ)

not have a convergent subsequence. So again, you show that is not reflexive. That𝐿1(ℝ)

is another example to show that.



Solution. Let weakly, i.e. we have . But𝑓
𝑛

𝑘

→ 𝑓 ∀𝑔 ∈ 𝐿∞(ℝ)
ℝ
∫ 𝑓

𝑛
𝑘

𝑔 𝑑𝑥 →
ℝ
∫ 𝑓 𝑔 𝑑𝑥

what is ?  i.e., is convergent . 𝑓
𝑛

𝑘 𝑛
𝑘

𝑛
𝑘
+1

∫ 𝑔 𝑑𝑥 ∀𝑔 ∈ 𝐿∞(ℝ)
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And that is not possible. You can take arbitrary; functions can be arbitrarily defined.𝐿∞

Similar argument we showed for , we showed the sequence does not have a convergent𝑙∞

subsequence. We have seen such an argument before, so it is the same argument.

Example: ,.𝑔 ∈ 𝐿∞(ℝ)

You take 𝑔(𝑥) = 1 ,    𝑥 ∈ [𝑛
2𝑘

,  𝑛
2𝑘

+ 1]

=− 1 ,   𝑥 ∈ [𝑛
2𝑘+1

,  𝑛
2𝑘+1

+ 1]

otherwise.= 0,

So, such a thing will alternately give you +1, -1, and so on, and therefore that integral

cannot converge. So, if you compute this, you will alternately get +1, -1, +1, -1, for the

subsequence and that is not a convergent subsequence. So, you cannot have a convergent

subsequence. We will continue with more exercises.


