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Before I start I just have one correction to make. Erratum. So, in the last lecture, just

before proving Young’s inequality I summarized the results of so I wrote𝐿𝑝(Ω)

by mistake. So, this should be actually , so . So,𝐿𝑝*(Ω) = 𝐿𝑝(Ω) (𝐿𝑝(Ω))* 1 ≤ 𝑝 < ∞

this is the correction which you should do. So today, we will do some exercises.

Problem 1. such that . If , so throughout we1 ≤ 𝑝,  𝑞,  𝑟 < ∞ 1
𝑝 + 1

𝑞 = 1
𝑟 𝑓 ∈ 𝐿𝑝(µ)

will have is a measure space. I will not specify it in every exercise, this is the(𝑋,  𝑆,  µ)

general hypothesis we always, so if and , show that and𝑓 ∈ 𝐿𝑝(µ) 𝑔 ∈ 𝐿𝑞(µ) 𝑓𝑔 ∈ 𝐿𝑟(µ)

that norm .||𝑓𝑔||
𝑟

≤ ||𝑓||
𝑝
 ||𝑔||

𝑞

Solution: So, you have that therefore you have that and . So,1
𝑝 + 1

𝑞 = 1
𝑟 𝑟 < 𝑝 𝑟 < 𝑞

, and . So, now, if you take so that is𝑝
𝑟 > 1 𝑞

𝑟 > 1 1
(𝑝/𝑟) + 1

(𝑞/𝑟) = 1
𝑋
∫ |𝑓𝑔|𝑟 𝑑µ,



= . Now, is integrable, so this is, is integrable. And
𝑋
∫ |𝑓𝑔|𝑟 𝑑µ

𝑋
∫ |𝑓|𝑟 |𝑔|𝑟 𝑑µ 𝑓 𝑝 𝑓𝑟 𝑝

𝑟

similarly, is integrable so we can apply Holder’s inequality.𝑔𝑟 𝑞
𝑟

𝑋
∫ |𝑓|𝑟 |𝑔|𝑟 𝑑µ ≤ (

𝑋
∫ |𝑓|𝑝𝑑µ)1/(𝑝/𝑟)(

𝑋
∫ |𝑔|𝑟𝑞/𝑟

𝑑µ)1/(𝑞/𝑟) =  (
𝑋
∫ |𝑓|𝑝 𝑑µ)𝑟/𝑝(

𝑋
∫ |𝑔|𝑞 𝑑µ)𝑟/𝑞 < ∞,   

now you take the r-th root on both sides ( is integrable) and .|𝑓𝑔|𝑟 ||𝑓𝑔||
𝑟

≤ ||𝑓||
𝑝
 ||𝑔||

𝑞

So, that is the solution.
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Problem 2. Let . We will define , recall𝑓 ∈ 𝐿𝑝(µ) ℎ
𝑓
(𝑡) = µ({|𝑓| > 𝑡})

So, this is a measurable set and therefore its{|𝑓| > 𝑡} = {𝑥 ∈ 𝑋  / |𝑓(𝑥)| > 𝑡}.

measure can be defined and so this is called the distribution function of . So then, show𝑓

that, ||𝑓||
𝑝

𝑝 = 𝑝
0

∞

∫ 𝑡𝑝−1 ℎ
𝑓
(𝑡) 𝑑𝑡.
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Solution. Let us take the right-hand side, i.e. . Now, what is ? It is a𝑝
0

∞

∫ 𝑡𝑝−1 ℎ
𝑓
(𝑡) 𝑑𝑡 ℎ

𝑓
(𝑡)

measure of some sets so you can write =
𝑋
∫ χ

{|𝑓|>𝑡}
(𝑥) 𝑑𝑥.  𝑝

0

∞

∫ 𝑡𝑝−1 ℎ
𝑓
(𝑡) 𝑑𝑡

. So, you have, is nothing but the measure,𝑝
0

∞

∫ 𝑡𝑝−1

𝑋
∫ χ

{|𝑓|>𝑡}
(𝑥) 𝑑𝑥 𝑑𝑡

𝑋
∫ χ

{|𝑓|>𝑡}
(𝑥) 𝑑𝑥

integral of characteristic function gives you the measure of the set so this is precisely,

what you have as . Now, everything is nonnegative so we can interchange the order ℎ
𝑓
(𝑡)

of integration without bothering about anything.

.𝑝
0

∞

∫ 𝑡𝑝−1

𝑋
∫ χ

{|𝑓|>𝑡}
(𝑥) 𝑑𝑥 𝑑𝑡 =  

𝑋
∫

0

|𝑓(𝑥)|

∫ 𝑝 𝑡𝑝−1𝑑𝑡 𝑑µ(𝑥) =
𝑋
∫ |𝑓(𝑥)|𝑝𝑑µ(𝑥) =  ||𝑓||

𝑝
𝑝

Problem 3 (a). Let almost everywhere (all functions are measurable),𝑓
𝑛

→ 𝑓 𝑔
𝑛

→ 𝑔

almost everywhere and . And also assume that converges to|𝑓
𝑛
(𝑥)| ≤ |𝑔

𝑛
(𝑥)|

𝑋
∫ 𝑔

𝑛 
𝑑µ

which is given to be finite. Then, show that . So, this is a
𝑋
∫ 𝑔

 
𝑑µ   

𝑋
∫ 𝑓

𝑛 
𝑑µ →

𝑋
∫ 𝑓 𝑑µ



generalized dominated convergence theorem. In dominated convergence theorem, you

would have are all bounded by a single and is integrable. Now, you are relaxing.𝑓
𝑛
'𝑠 𝑔 𝑔

You are saying is bounded by , converges to and is integrable.𝑓
𝑛

𝑔
𝑛

𝑔
𝑛

𝑔 𝑔
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Solution. So, So, this implies and . So, we can|𝑓
𝑛
| ≤ |𝑔

𝑛
|.  𝑔

𝑛
+ 𝑓

𝑛
≥ 0 𝑔

𝑛
− 𝑓

𝑛
≥ 0

apply Fatou’s Lemma. So, what does Fatou’s Lemma say? So, . So,𝑔
𝑛

+ 𝑓
𝑛
 → 𝑔 + 𝑓

lim inf as converges.
𝑋
∫ 𝑔 + 𝑓 𝑑µ ≤

𝑋
∫ (𝑔

𝑛
+ 𝑓

𝑛
 )𝑑µ =  

𝑋
∫ 𝑔 𝑑µ + lim inf

𝑋
∫ 𝑓

𝑛 
𝑑µ 𝑔

𝑛

Similarly, lim inf
𝑋
∫ 𝑔 − 𝑓 𝑑µ ≤

𝑋
∫ (𝑔

𝑛
− 𝑓

𝑛
 )𝑑µ =  

𝑋
∫ 𝑔 𝑑µ −  lim sup

𝑋
∫ 𝑓

𝑛 
𝑑µ.

Now, integral is finite and therefore we are allowed to cancel it in both these
𝑋
∫ 𝑔 𝑑µ

relations. So, we get So, we∫ 𝑓 𝑑µ ≤ lim inf  ∫ 𝑓
𝑛 

𝑑µ ≤ lim sup  ∫ 𝑓
𝑛 

𝑑µ ≤ ∫ 𝑓 𝑑µ.  

have a sandwich in which either end is the same so this implies,

Therefore, .lim inf  ∫ 𝑓
𝑛 

𝑑µ = lim sup ∫ 𝑓
𝑛 

𝑑µ = ∫ 𝑓 𝑑µ.
𝑛 ∞
lim
→ 𝑋

∫ 𝑓
𝑛 

𝑑µ =
𝑋
∫ 𝑓 𝑑µ
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(b) we are going to use this. Let and , and almost1 ≤ 𝑝 < ∞ 𝑓
𝑛
,  𝑓 ∈ 𝐿𝑝(µ)  𝑓

𝑛
→ 𝑓

everywhere, then , that is in if and only .||𝑓
𝑛

− 𝑓 ||
𝑝

→ 0  𝑓
𝑛

→ 𝑓 𝐿𝑝 ||𝑓
𝑛
||

𝑝
→  ||𝑓||

𝑝

So, this is a useful result because you have, if you know that , if𝑓
𝑛
,  𝑓 ∈ 𝐿𝑝(µ)  𝑓

𝑛
→ 𝑓

pointwise, and the norm converges, this is usually easier to show, then you have that it

actually converges in the norm. So, this is a very useful result.𝐿𝑝

Solution. As the norm is a continuous function so if in , this implies that 𝑓
𝑛

→ 𝑓 𝐿𝑝

so that is true in any nonlinear space, so you don’t have to do much.||𝑓
𝑛
||

𝑝
→  ||𝑓||

𝑝

Now we are going to do the converse which is the interesting part, so almost 𝑓
𝑛

→ 𝑓

everywhere and we are given that . And you have to show,||𝑓
𝑛
||

𝑝
→  ||𝑓||

𝑝

. So, let me define almost everywhere. And then by||𝑓
𝑛

− 𝑓||
𝑝

→ 0 𝐹
𝑛

= |𝑓
𝑛

− 𝑓|𝑝 → 0

convexity, the convexity of .|𝐹
𝑛
| ≤  2𝑝−1(|𝑓

𝑛
|𝑝 + |𝑓|𝑝) 𝑡 → |𝑡|𝑝



Define . And also, you have that 2𝑝−1(|𝑓
𝑛
|𝑝 + |𝑓|𝑝) ≡  𝐺

𝑛
→ 𝐺 ≡   2𝑝|𝑓|𝑝

because is , . And also, and
𝑋
∫ 𝐺 𝑑µ <  ∞

𝑋
∫ 𝐺 𝑑µ

𝑋
∫ 2𝑃 |𝑓|𝑝 𝑓 ∈ 𝐿𝑝 

𝑋
∫ 𝐺

𝑛
 𝑑µ →  

𝑋
∫ 𝐺 𝑑µ

that is precisely why we are using part of the hypothesis. So,||𝑓
𝑛
||

𝑝
→  ||𝑓||

𝑝
⇒  𝑓

𝑛
→  𝑓

therefore, you have that all the conditions of the previous part are true and therefore

that is . So, this proves the converse.
𝑋
∫ 𝐹

𝑛
𝑑µ → 0 ||𝑓

𝑛
− 𝑓||

𝑝
→ 0
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Problem 4. , in and almost everywhere and1 ≤ 𝑝 < ∞  𝑓
𝑛

→ 𝑓 𝐿𝑝(µ)  𝑔
𝑛

→ 𝑔 |𝑔
𝑛
|,  |𝑔|

are all bounded by a fixed end constant. Then, in . These kinds of𝑓
𝑛 

𝑔
𝑛

→ 𝑓𝑔 𝐿𝑝(µ)

theorems are very useful because we want to know the convergence of integral, which is

the key thing in all this.

Solution. by the Triangle||𝑓
𝑛
𝑔

𝑛
− 𝑓𝑔||

𝑝
≤ ||(𝑓

𝑛
− 𝑓)𝑔

𝑛
||

𝑝
+ ||𝑓(𝑔

𝑛
− 𝑔)||

𝑝

inequality.  So, let us take the first one. .||(𝑓
𝑛

− 𝑓)𝑔
𝑛
||

𝑝

.||(𝑓
𝑛

− 𝑓)𝑔
𝑛
||

𝑝
𝑝 =

𝑋
∫ |𝑓

𝑛
− 𝑓|𝑝|𝑔

𝑛
|𝑝𝑑µ ≤ 𝑀𝑝

𝑋
∫ |𝑓

𝑛
− 𝑓|𝑝𝑑µ → 0



Now, pointwise, that is given||𝑓(𝑔
𝑛

− 𝑔)||
𝑝

𝑝 =
𝑋
∫ |𝑓|𝑝|𝑔

𝑛
− 𝑔|𝑝𝑑µ, |𝑓|𝑝|𝑔

𝑛
− 𝑔|𝑝 → 0

to us. Also, and this is integrable. By dominated convergence|𝑓|𝑝|𝑔
𝑛

− 𝑔|𝑝 ≤ 2𝑝𝑀𝑝|𝑓|𝑝

theorem, we have .  So, in||𝑓(𝑔
𝑛

− 𝑔)||
𝑝

→ 0 𝑓
𝑛
𝑔

𝑛
→ 𝑓𝑔 𝐿𝑝.


