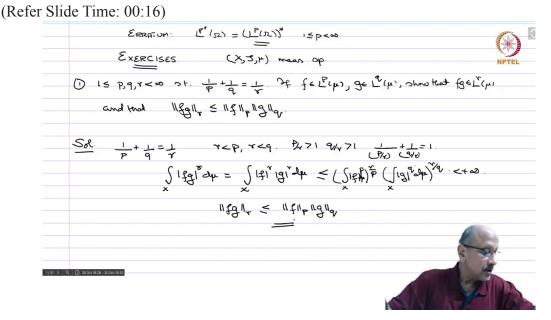
Functional Analysis Professor S. Kesavan Department of Mathematics The Institute of Mathematical Sciences

Lecture No. 45

Exercises Part – 1



Before I start I just have one correction to make. Erratum. So, in the last lecture, just before proving Young's inequality I summarized the results of $L^{p}(\Omega)$ so I wrote $L^{p^{*}}(\Omega) = L^{p}(\Omega)$ by mistake. So, this should be actually $(L^{p}(\Omega))^{*}$, so $1 \le p < \infty$. So, this is the correction which you should do. So today, we will do some exercises.

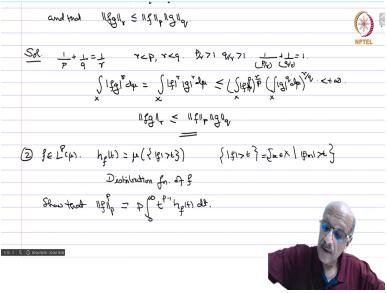
Problem 1. $1 \le p$, q, $r < \infty$ such that $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$. If $f \in L^p(\mu)$, so throughout we will have (X, S, μ) is a measure space. I will not specify it in every exercise, this is the general hypothesis we always, so if $f \in L^p(\mu)$ and $g \in L^q(\mu)$, show that $fg \in L^r(\mu)$ and that norm $||fg||_r \le ||f||_p ||g||_q$.

Solution: So, you have that $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$ therefore you have that r < p and r < q. So, $\frac{p}{r} > 1$, $\frac{q}{r} > 1$ and $\frac{1}{(p/r)} + \frac{1}{(q/r)} = 1$. So, now, if you take $\int_{X} |fg|^r d\mu$, so that is $\int_{X} |fg|^{r} d\mu = \int_{X} |f|^{r} |g|^{r} d\mu.$ Now, f is p integrable, so this is, f^{r} is $\frac{p}{r}$ integrable. And similarly, g^{r} is $\frac{q}{r}$ integrable so we can apply Holder's inequality.

$$\int_{X} |f|^{r} |g|^{r} d\mu \leq \left(\int_{X} |f|^{p} d\mu\right)^{1/(p/r)} \left(\int_{X} |g|^{r^{q/r}} d\mu\right)^{1/(q/r)} = \left(\int_{X} |f|^{p} d\mu\right)^{r/p} \left(\int_{X} |g|^{q} d\mu\right)^{r/q} < \infty,$$

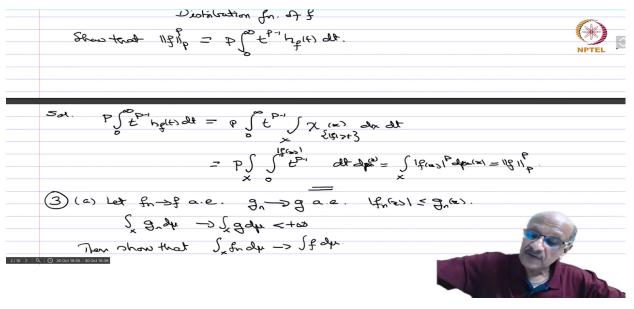
now you take the r-th root on both sides $(|fg|^r \text{ is integrable})$ and $||fg||_r \leq ||f||_p ||g||_q$. So, that is the solution.

(Refer Slide Time: 04:16)



Problem 2. Let $f \in L^p(\mu)$. We will define $h_f(t) = \mu(\{|f| > t\})$, recall $\{|f| > t\} = \{x \in X \mid |f(x)| > t\}$. So, this is a measurable set and therefore its measure can be defined and so this is called the distribution function of f. So then, show that, $||f||_p^p = p \int_0^\infty t^{p-1} h_f(t) dt$.

(Refer Slide Time: 05:38)



Solution. Let us take the right-hand side, i.e. $p \int_{0}^{\infty} t^{p-1} h_{f}(t) dt$. Now, what is $h_{f}(t)$? It is a

measure of some sets so you can write $\int_X \chi_{\{|f|>t\}}(x) dx$. $p \int_0^\infty t^{p-1} h_f(t) dt =$

$$p\int_{0}^{\infty} t^{p-1} \int_{X} \chi_{\{|f|>t\}}(x) \, dx \, dt$$
. So, you have, $\int_{X} \chi_{\{|f|>t\}}(x) \, dx$ is nothing but the measure, integral of characteristic function gives you the measure of the set so this is precisely, what you have as $h_{f}(t)$. Now, everything is nonnegative so we can interchange the order

of integration without bothering about anything.

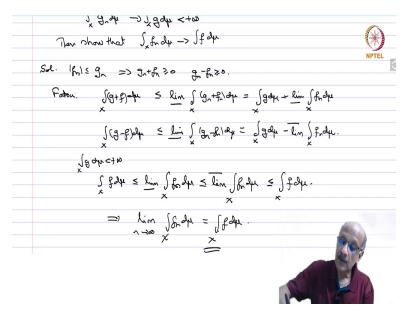
$$p\int_{0}^{\infty} t^{p-1} \int_{X} \chi_{\{|f|>t\}}(x) \, dx \, dt = \int_{X} \int_{0}^{|f(x)|} p \, t^{p-1} dt \, d\mu(x) = \int_{X} |f(x)|^{p} d\mu(x) = ||f||_{p}^{p}$$

Problem 3 (a). Let $f_n \to f$ almost everywhere (all functions are measurable), $g_n \to g$ almost everywhere and $|f_n(x)| \le |g_n(x)|$. And also assume that $\int_X g_n d\mu$ converges to

 $\int_X g \, d\mu$ which is given to be finite. Then, show that $\int_X f_n \, d\mu \to \int_X f \, d\mu$. So, this is a

generalized dominated convergence theorem. In dominated convergence theorem, you would have f_n 's are all bounded by a single g and g is integrable. Now, you are relaxing. You are saying f_n is bounded by g_n , g_n converges to g and g is integrable.

(Refer Slide Time: 09:05)



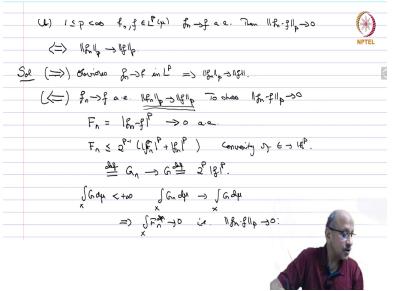
Solution. So, $|f_n| \le |g_n|$. So, this implies $g_n + f_n \ge 0$ and $g_n - f_n \ge 0$. So, we can apply Fatou's Lemma. So, what does Fatou's Lemma say? So, $g_n + f_n \to g + f$. So, $\int_X g + f \, d\mu \le \liminf \int_X (g_n + f_n) d\mu = \int_X g \, d\mu + \liminf \int_X f_n \, d\mu$ as g_n converges.

Similarly, $\int_X g - f \, d\mu \leq \lim \inf \int_X (g_n - f_n) d\mu = \int_X g \, d\mu - \lim \sup \int_X f_n \, d\mu.$

Now, integral $\int_X g d\mu$ is finite and therefore we are allowed to cancel it in both these

relations. So, we get $\int f d\mu \leq \lim \inf \int f_n d\mu \leq \lim \sup \int f_n d\mu \leq \int f d\mu$. So, we have a sandwich in which either end is the same so this implies, lim inf $\int f_n d\mu = \limsup \int f_n d\mu = \int f d\mu$. Therefore, $\lim_{n \to \infty} \int_X f_n d\mu = \int_X f d\mu$.

(Refer Slide Time: 11:41)



(**b**) we are going to use this. Let $1 \le p < \infty$ and $f_n, f \in L^p(\mu)$, and $f_n \to f$ almost everywhere, then $||f_n - f||_p \to 0$, that is $f_n \to f$ in L^p if and only $||f_n||_p \to ||f||_p$.

So, this is a useful result because you have, if you know that f_n , $f \in L^p(\mu)$, if $f_n \to f$ pointwise, and the norm converges, this is usually easier to show, then you have that it actually converges in the L^p norm. So, this is a very useful result.

Solution. As the norm is a continuous function so if $f_n \to f$ in L^p , this implies that $||f_n||_p \to ||f||_p$ so that is true in any nonlinear space, so you don't have to do much. Now we are going to do the converse which is the interesting part, so $f_n \to f$ almost everywhere and we are given that $||f_n||_p \to ||f||_p$. And you have to show, $||f_n - f||_p \to 0$. So, let me define $F_n = |f_n - f|^p \to 0$ almost everywhere. And then by convexity, $|F_n| \leq 2^{p-1}(|f_n|^p + |f|^p)$ the convexity of $t \to |t|^p$. Define $2^{p-1}(|f_n|^p + |f|^p) \equiv G_n \rightarrow G \equiv 2^p |f|^p$. And also, you have that

 $\int_{X} G d\mu < \infty \text{ because } \int_{X} G d\mu \text{ is } \int_{X} 2^{p} |f|^{p}, \quad f \in L^{p}. \text{ And also, } \int_{X} G_{n} d\mu \rightarrow \int_{X} G d\mu \text{ and}$ that is precisely why we are using $||f_{n}||_{p} \rightarrow ||f||_{p} \Rightarrow f_{n} \rightarrow f$ part of the hypothesis. So, therefore, you have that all the conditions of the previous part are true and therefore $\int_{X} F_{n} d\mu \rightarrow 0$ that is $||f_{n} - f||_{p} \rightarrow 0$. So, this proves the converse.

(Refer Slide Time: 15:45)

Problem 4. $1 \le p < \infty, f_n \to f$ in $L^p(\mu)$ and $g_n \to g$ almost everywhere and $|g_n|, |g|$ are all bounded by a fixed end constant. Then, $f_n g_n \to fg$ in $L^p(\mu)$. These kinds of theorems are very useful because we want to know the convergence of integral, which is the key thing in all this.

Solution. $||f_ng_n - fg||_p \le ||(f_n - f)g_n||_p + ||f(g_n - g)||_p$ by the Triangle inequality. So, let us take the first one. $||(f_n - f)g_n||_p$.

$$||(f_n - f)g_n||_p^p = \int_X |f_n - f|^p |g_n|^p d\mu \le M^p \int_X |f_n - f|^p d\mu \to 0.$$

Now, $||f(g_n - g)||_p^p = \int_X |f|^p |g_n - g|^p d\mu$, $|f|^p |g_n - g|^p \to 0$ pointwise, that is given to us. Also, $|f|^p |g_n - g|^p \le 2^p M^p |f|^p$ and this is integrable. By dominated convergence theorem, we have $||f(g_n - g)||_p \to 0$. So, $f_n g_n \to fg$ in L^p .