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We now have the following proposition.

Proposition: Let be open. Then is not reflexive. We saw that all theΩ ⊂ ℝ𝑁 𝐿1(Ω) 𝐿𝑝

spaces were reflexive and we said nothing about and now, we show that1 < 𝑝 < ∞ 𝐿1

it is not reflexive.

Proof: Without loss of generality, we can assume that . So, you can translate and0 ∈ Ω

by translation, you lose nothing. The Lebesgue measure is translation invariant and

therefore we can always assume that . So, let be sufficiently large such that, the0 ∈ Ω 𝑛

ball . So, all sufficiently large, this thing. Let us assume that is the𝐵(0, 1
𝑛 ) ⊂ Ω α

𝑛

Lebesgue measure of , call this . Then you set, and𝐵
𝑛

α
𝑛

= |𝐵
𝑛
|−1 𝑓

𝑛
(𝑥) = α

𝑛
  ∀𝑥 ∈ 𝐵

𝑛



0 on . So, then obviously and in fact, you haveΩ\ 𝐵
𝑛

𝑓
𝑛
∈𝐿1(Ω)

Ω
∫ |𝑓

𝑛
| 𝑑𝑥 =

𝐵
𝑛

∫ α
𝑛 

𝑑𝑥 =

. So, . So, if were reflexive, there exists a weaklyα
𝑛
|𝐵

𝑛
| = 1 ||𝑓

𝑛
||

1
= 1   ∀ 𝑛 𝐿1(Ω)

convergent subsequence. So, we have seen that any bounded sequence in a reflexive

space has a weakly convergent subsequence. So, let us assume, if possible, let weakly𝑓
𝑛

𝑘

converge to . So, this means, in the dual space which we have seen is , you𝑓 ∀ ℎ 𝐿∞(Ω)

have converges to integral .
Ω
∫ 𝑓

𝑛
𝑘

ℎ 𝑑𝑥
Ω
∫ 𝑓 ℎ 𝑑𝑥
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So, if I take .ℎ ≡ 1⇒1 =
Ω
∫ 𝑓

𝑛
𝑘

𝑑𝑥 →  
Ω
∫ 𝑓 𝑑𝑥 ⇒

Ω
∫ 𝑓 𝑑𝑥 = 1

On the other hand, let us consider , this is also an open set and of courseℎ ∈  𝐶
𝑐
(Ω \ {0})

is contained in , it is also function because it vanishes outside a compact set and 𝐶
𝑐
(Ω) 𝐿∞

then, so this is also in . So, you can put there. Then, so what do you have? You have𝐿∞ ℎ

, whereas the origin is there and then you have , so we have removed this point.Ω Ω \ 0



Then, for , sufficiently large, will be empty. This implies that𝑛 𝑘 𝑠𝑢𝑝𝑝(ℎ) ∩ 𝐵
𝑛

𝑘

and this implies that . and therefore, for every
Ω
∫ 𝑓

𝑛
𝑘

ℎ 𝑑𝑥 = 0
Ω
∫ 𝑓 ℎ 𝑑𝑥 = 0 𝑓 ∈𝐿1(Ω)

, . So, by the theorem which we have proved, we have,ℎ ∈ 𝐶
𝑐 

(Ω\0) ∫ 𝑓 ℎ 𝑑𝑥 = 0 𝑓 = 0

almost everywhere in . Because for every continuous function with compact supportΩ \ 0

and this is compact support in . But then if you add 0, still the set is of∫ 𝑓 ℎ 𝑑𝑥 = 0 Ω \ 0

measure 0 so that is almost everywhere in . But that is a contradiction because𝑓 = 0 Ω

and , so this is a contradiction and therefore, you cannot have a∫ 𝑓 𝑑𝑥 =  1 𝑓 = 0

weakly convergent subsequence for this sequence and therefore is not reflexive.𝐿1
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Corollary: open, then is not reflexive.Ω ⊂ ℝ𝑁 𝐿∞ (Ω)

So, this is immediate. Because if is reflexive, is reflexive and conversely. Therefore𝑣 𝑣*

is , is not reflexive therefore cannot be reflexive either.(𝐿1(Ω)* 𝐿∞(Ω) 𝐿1 𝐿∞



To sum up, we have , . is the conjugate exponent. (𝐿𝑝 (Ω))* = 𝐿𝑝* (Ω) 1 ≤ 𝑝 < ∞ 𝑝*

This is not true for . We have not proved it, we will see in the exercises actually that𝐿∞

there is a continuous linear function which we will do. But then, you have that is𝐿𝑝(Ω)

reflexive and separable if . is separable but not reflexive and finally1 < 𝑝 < ∞ 𝐿1 (Ω)

is not separable, not reflexive. So, this is the summary of all that we have done so𝐿∞ (Ω) 

far.
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So now, we will conclude with an important inequality. So,

Theorem: (Young’s Inequality) Let . Let . So, we are now in1 < 𝑝 < ∞ 𝑓 ∈ 𝐿1(ℝ𝑁)

the entire space and . Then, the map is well𝐿1(ℝ𝑁) 𝑔 ∈ 𝐿𝑝(ℝ𝑁) 𝑥↦
ℝ𝑁 
∫ 𝑓(𝑦)𝑔(𝑥 − 𝑦)𝑑𝑦

defined for almost every . The function thus defined is called the convolution of and𝑥 𝑓 

and is denoted by . Further, and you have the Jensen’s𝑔 𝑓 * 𝑔 𝑓 * 𝑔 ∈ 𝐿𝑝(ℝ𝑁)

inequality, . So, this is called Young’s inequality.||𝑓 * 𝑔||
𝑝

≤ ||𝑓||
1
||𝑔||

𝑝

Proof: Let , is the conjugate exponent. Then, you consider the functionℎ ∈ 𝐿𝑝* (ℝ𝑁) 𝑝*

. So, this is measurable in the product space. Now, you(𝑥,  𝑦) → 𝑓(𝑦) 𝑔(𝑥 − 𝑦) ℎ(𝑥)



consider the iterated integral. So, consider, This is𝐼 =
ℝ

𝑦
𝑁

∫  
ℝ

𝑥
𝑁

∫ |𝑓(𝑦) 𝑔(𝑥 − 𝑦)ℎ(𝑥)| 𝑑𝑦 𝑑𝑥.

well defined because we are having a measurable function and modulus is non negative,

therefore you can do.
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So, Lebesgue measure is translation invariant and we can also interchange the order of

integration, because you have a non negative function, Fubini’s Theorem says that I can

interchange, so . Now, here you have𝐼 =
ℝ

𝑦
𝑁

∫ |𝑓(𝑦)| (
ℝ

𝑥
𝑁

∫ |𝑔(𝑥 − 𝑦)ℎ(𝑥)| 𝑑𝑥) 𝑑𝑦 𝑔 ∈  𝐿𝑝

and . So, by Holders inequality,ℎ ∈ 𝐿𝑝*

, since is not a fixed constant,𝐼 ≤  
ℝ

𝑦
𝑁

∫ |𝑓(𝑦)| ||𝑔||
𝑝 

||ℎ| 𝑑𝑦 ≤ ||𝑔||
𝑝 

||ℎ||
𝑝
 ||𝑓||

1
< ∞ 𝑦

so you are just translating the origin for this function and therefore as the Lebesgue

measure is translation invariant so this will give you But these are constants||𝑔||
𝑝 

||ℎ||
𝑝*

which come out and therefore the integral is less than equal to , then integral||𝑔||
𝑝 

||ℎ|

is just . And that is of course finite.|𝑓(𝑦)| ||𝑓||
1
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By Fubini’s theorem, if the iterated integral with the modulus is finite then for almost

every , we have exists. That is part of Fubini's theorem.𝑥
ℝ𝑁
∫ 𝑓(𝑦) 𝑔(𝑥 − 𝑦) ℎ(𝑥) 𝑑𝑦

When you have the iterated integral with the modulus is finite then for almost every value

of one variable, the function in the other variable, the integral will exist. Here, you notice

that does not depend on . So, if we come out of the integral, so times thisℎ(𝑥) 𝑦 ℎ(𝑥)

integral exists. Now, you choose such that . Forℎ(𝑥)∈𝐿𝑝* (ℝ𝑁) ℎ(𝑥) ≠ 0  ∀𝑥 ∈ 𝑅𝑁

instance, you can take , this is a function which will never vanish in all theℎ = 𝑒−|𝑥|2

𝐿𝑝

spaces and therefore you can choose this, so, then you can divide by and thereforeℎ(𝑥)

this implies for almost every , we have exists. So, mapping is𝑥
ℝ𝑁
∫ 𝑓(𝑦) 𝑔(𝑥 − 𝑦) 𝑑𝑦  

well defined and therefore the convolution is also well defined.
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Now, we consider . Andℎ →
ℝ𝑁

∫ ℎ(𝑥)(𝑓 * 𝑔)(𝑥)𝑑𝑥 =
ℝ

𝑥
𝑁

∫  
ℝ

𝑦
𝑁

∫ ℎ(𝑥) 𝑓(𝑦) 𝑔(𝑥 − 𝑦) 𝑑𝑦 𝑑𝑥

therefore this is continuous, linear functional on because goes to this𝐿𝑝* (ℝ𝑁) ℎ

continuous linear functional and , we just|∫ ℎ(𝑥) (𝑓 * 𝑔)(𝑥)𝑑𝑥| ≤ ||ℎ||
𝑝*||𝑓||

1
||𝑔||

𝑝

calculated it earlier. This is a continuous linear functional and hence by the Riesz

Representation Theorem, , so because that is a dual of1 < 𝑝 < ∞ 𝑓 * 𝑔 ∈ 𝐿𝑝(ℝ𝑁) 𝐿𝑝*

and you have and that is exactly Young’s inequality which we||𝑓 * 𝑔||
𝑝

≤ ||𝑓||
1
||𝑔||

𝑝

wanted to show.
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Remark. By a simple change of variable, we also have   𝑓 * 𝑔 =
ℝ𝑁 
∫ 𝑓(𝑥 − 𝑦)𝑔(𝑦)𝑑𝑦.

Remark. Young’s inequality is also true for . So, if and are both in , is𝑝 = 1 𝑓 𝑔 𝐿1 𝑓 * 𝑔

well defined and you have . This is true and we will see it in the||𝑓 * 𝑔||
1

≤ ||𝑓||
1
||𝑔||

1

exercises.


