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We will now prove an important theorem,

Theorem: Let be a measure space. Let . Then is a Banach space. So,(𝑋, ζ, µ) 1≤𝑝≤∞  𝐿𝑝(µ)  𝐿𝑝

is a space of equivalence classes with respect to relation of equality almost everywhere, with the

integrability norm and, or if it is essentially bounded, then it is a norm infinity and so each of𝑝

these spaces is complete.

Proof: So first case we will take , because these involve integral, so the arguments are1≤𝑝 < ∞

slightly different. So, let be Cauchy in . So, we have to show that this converges to𝑓
𝑛{ }  𝐿𝑝(µ)

some function in . So, enough to show there exists a convergent subsequence because we have 𝐿𝑝

a Cauchy sequence and you have a convergence subsequence and the entire Cauchy sequence

will converge to the same limit. So, it is enough to show there exists a convergence subsequence.



Now because you have a Cauchy sequence, you can always find a subsequence such that

consecutive terms are as close to each other as you prescribe.

This we have done several times before. So, choose subsequence such that𝑓
𝑛

𝑘

⎰
⎱

⎱
⎰

. so you can always do this. So and we now define‖𝑓
𝑛

𝑘

− 𝑓
𝑛

𝑘+1

‖
𝑝

≤ 1

2𝑘

and then you define . So then of𝑔
𝑛

𝑥( ) =  
𝑘=1

𝑛

∑ 𝑓
𝑛

𝑘+1

𝑥( ) − 𝑓
𝑛

𝑘

(𝑥)
|
|
|

|
|
|

𝑔 𝑥( ) =
𝑘=1

∞

∑ 𝑓
𝑛

𝑘+1

𝑥( ) − 𝑓
𝑛

𝑘

(𝑥)
|
|
|

|
|
|

course, you have that . So, it is a monotonically increasing sequence for each , because𝑔
𝑛
↑𝑔 𝑥

you are taking to and then you are adding positive terms more and more. So, this is a1 𝑛

monotonically increasing sequence and you have that it increases to and also by the triangle𝑔(𝑥)

inequality, , that is a geometric series and I can estimate it‖𝑔
𝑛
‖

𝑝
≤ 

𝑘=1

𝑛

∑ ‖𝑓
𝑛

𝑘+1

− 𝑓
𝑛

𝑘

‖
𝑝

≤ 
𝑘=1

𝑛

∑ 1

2𝑘

higher by to , so that is less than equal to . So, and it increases to , and ,1 ∞ 1 0≤𝑔
𝑛

𝑔  ‖𝑔
𝑛
‖

𝑝
≤1

so the monotone convergence theorem, you have , because the will converge to‖𝑔‖
𝑝
≤1 ∫ 𝑔

𝑛| |𝑝

. That is the monotone convergence theorem and therefore . So in particular, we∫ 𝑔| |𝑝 ∫ 𝑔| |𝑝≤1

have is finite almost everywhere. So, except on a set of measure zero. Because its𝑔(𝑥) 𝑝

integral is less than equal to , so it cannot be infinity on a set of positive measure. So, it has to1

be finite everywhere.
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And further if , then you have𝑘≥𝑙≥2

.𝑓
𝑛

𝑘

𝑥( ) − 𝑓
𝑛

𝑙

(𝑥)
|
|
|

|
|
|

≤ 𝑓
𝑛

𝑘

𝑥( ) − 𝑓
𝑛

𝑘−1

𝑥( )
|
|
|

|
|
|

+ 𝑓
𝑛

𝑘−1

𝑥( ) − 𝑓
𝑛

𝑘−2

𝑥( )
|
|
|

|
|
|

+ ⋅⋅⋅ + 𝑓
𝑛

𝑙+1

𝑥( ) − 𝑓
𝑛

𝑙

𝑥( )
|
|
|

|
|
|

Now, this is, what is this, this is nothing but and therefore that is less than equal𝑔
𝑘

𝑥( ) − 𝑔
𝑙−1

𝑥( )

to But you know that converges to point wise almost everywhere.𝑔 𝑥( ) − 𝑔
𝑙−1

𝑥( ). 𝑔
𝑛{ } 𝑔

Therefore for almost every , we have which goes to as𝑥 𝑓
𝑛

𝑘

𝑥( ) − 𝑓
𝑛

𝑙

(𝑥)
|
|
|

|
|
|

≤ 𝑔
𝑘

𝑥( ) − 𝑔
𝑙−1

𝑥( ) 0 𝑙

tends to infinity and therefore, is Cauchy and therefore, you let , so define𝑓
𝑛

𝑘

(𝑥)
⎰
⎱

⎱
⎰ 𝑓

. Whenever it exists and elsewhere and this is on a set of measure zero, because𝑓
𝑛

𝑘

(𝑥) = 𝑓(𝑥) 0

almost everywhere it converges and therefore you have this. So, we now have a candidate and

we have to check if this candidate is in and if you can converge in . So is of𝐿𝑝 𝐿𝑝 𝑔 𝑥( ) − 𝑔
𝑙−1

𝑥( )

course less than equal to also, so that is you already have. So, now if you take tending to𝑔 𝑥( ) 𝑙

infinity, in this thing, so you get , almost everywhere. Because except on𝑓
𝑛

𝑘

𝑥( ) − 𝑓(𝑥)
|
|
|

|
|
|

≤ 𝑔(𝑥)

a set of measure zero, there everything is zero and we do not have to worry. So, is in ,𝑔 𝐿𝑝

because , is in because it is a finite sum of, it is anyway in , that is given to you,‖𝑔‖
𝑝
≤1 𝑓

𝑛
𝑘

𝐿𝑝 𝐿𝑝



so implies that and then what, you have𝑓
𝑛

𝑘

𝑥( ) − 𝑓(𝑥)
|
|
|

|
|
|
≤𝑔(𝑥) 𝑓∈ 𝐿𝑝 𝑓

𝑛
𝑘

𝑥( ) − 𝑓(𝑥)
|
|
|

|
|
|

𝑝

→0

almost everywhere of course, and , and this is integrable. Because𝑓
𝑛

𝑘

𝑥( ) − 𝑓(𝑥)
|
|
|

|
|
|

𝑝

≤ 𝑔𝑝(𝑥)

.∫ 𝑔𝑝≤1

(Refer Slide Time: 09:30)

And consequently by the dominated convergence theorem, we have that

and that is converges to in . So, we have subsequence
𝑋
∫ 𝑓

𝑛
𝑘

𝑥( ) − 𝑓(𝑥)
|
|
|

|
|
|

𝑝

𝑑µ→0 𝑓
𝑛

𝑘

⎰
⎱

⎱
⎰ 𝑓 𝐿𝑝(µ)

which converges in . Therefore in the original sequence being Cauchy, so since Cauchy,𝐿𝑝 𝑓
𝑛{ }

we have itself converges to in Therefore is complete. So now that completes the𝑓
𝑛{ } 𝑓 𝐿𝑝.  𝐿𝑝(µ)

case where is strictly less than .𝑝 ∞
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Case 2: . So, you have is Cauchy in . So, for every , natural number or𝑝 = ∞ 𝑓
𝑛{ } 𝐿∞(µ) 𝑘

positive integer, there exists such that , for all . Now what does𝑁
𝑘

‖𝑓
𝑚

− 𝑓
𝑛
‖

∞
< 1

𝑘 𝑚, 𝑛≥𝑁
𝑘

this mean? So, that is, there exists and for every , this is equal to ,𝐸
𝑘
⊂𝑋,  µ 𝐸

𝑘( ) = 0 𝑥∈𝐸
𝑘
𝑐 𝑋∖𝐸

𝑘

we have . That is what we mean by saying that because this is essential𝑓
𝑛
(𝑥) − 𝑓

𝑚
(𝑥)| | < 1

𝑘

supremum and therefore it is valid except on the set of measure and this is true for all0 𝑚, 𝑛≥𝑁
𝑘

. So now, you take and then is a countable union of sets of measure zero and𝐸 = ⋃
𝑘=1
∞ 𝐸

𝑘
µ(𝐸)

therefore is also and what is , so . So, if you take every, for, so everyµ(𝐸) 0 𝐸𝑐 𝐸𝑐 = ⋂
𝑘=1
∞ 𝐸

𝑘
𝑐

, is in every . So, for all you have, which is the complement of the set of measure𝑥∈𝐸𝑐 𝐸
𝑘
𝑐 𝑥∈𝐸𝑐

zero, you have for every and for all , we have and therefore𝑘 𝑛, 𝑚≥𝑁
𝑘

𝑓
𝑛
(𝑥) − 𝑓

𝑚
(𝑥)| | < 1

𝑘

is Cauchy, uniformly Cauchy in fact in . So, you take on and then𝑓
𝑛
(𝑥){ } 𝐸𝑐 𝑓 𝑥( ) = 𝑓

𝑛
(𝑥) 𝐸𝑐

you can take in fact on for instance if you like. So then you have, if you allow to tend to0 𝐸 𝑚

infinity, you have for all and for all . That is and𝑓
𝑛
(𝑥) − 𝑓(𝑥)| | ≤ 1

𝑘 𝑥∈𝐸𝑐 𝑛≥𝑁
𝑘

𝑓∈𝐿∞ 𝑓
𝑛
→𝑓

in . So, that completes the proof of this theorem that all the spaces are in fact Banach𝐿∞ 𝐿𝑝



spaces and then we will say, see later, when they are reflexive, when they are separable and all

these things in certain cases.
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So, what is an important corollary, we have that,

Corollary: So let be measure space and let in , . Then, there exists a(𝑋, ζ, µ) 𝑓
𝑛
→𝑓 𝐿𝑝(µ) 1≤𝑝≤𝑞

subsequence such that𝑓
𝑛

𝑘

⎰
⎱

⎱
⎰

1. point wise, that means almost everywhere, that is except on a set of𝑓
𝑛

𝑘

→𝑓 𝑓
𝑛

𝑘

(𝑥)→𝑓(𝑥)

zero for all this happens, and𝑥

2. you have that almost everywhere for some .𝑓
𝑛

𝑘

(𝑥)
|
|
|

|
|
|
≤ℎ(𝑥) ℎ ∈ 𝐿𝑝

Proof: Obvious if , in fact, the entire sequence has this property. Because we have shown𝑝 = ∞

that the entire sequence converges and that we did not even take a subsequence. So, if 1≤𝑝 < ∞

, then we saw there exists an which converges to point wise and and in𝑓
𝑛

𝑘

⎰
⎱

⎱
⎰ 𝑓

~
𝑓
~

∈ 𝐿𝑝 𝑓
𝑛

𝑘

→ 𝑓
~

of course, we saw this. But then you are given that and therefore this implies𝐿𝑝(µ) 𝑓
𝑛
→𝑓 𝑓 = 𝑓

~



almost everywhere that is in . Therefore the first one is proved, namely you have a𝑓 = 𝑓
~

𝐿𝑝

subsequence which converges. So, this is a very important property, very useful property in

convergence in spaces. So, if you have convergence, then for a subsequence, you have𝐿𝑝 𝐿𝑝

point wise convergence. So, convergence is some convergence of some integral to . What is𝐿𝑝 0

going to ? So, it means that . So, this is something known about the𝑓
𝑛{ } 𝐿𝑝

𝑋
∫ |𝑓

𝑛
− 𝑓|𝑝𝑑µ→0

integrals. Whereas I am saying then there you can find a subsequence which converges point

wise except on a set of measure zero.

Now for the second part, you just take , where is the function that infinite seriesℎ = 𝑓
~

+ 𝑔 𝑔

which we defined in the proof of the theorem, as in proof of the theorem. Then is in and𝑔 ℎ 𝐿𝑝

in fact . This is triangle inequality and that will tell you this. So now, so we now𝑓
𝑛

𝑘

(𝑥)
|
|
|

|
|
|
≤ℎ(𝑥)

have the Banach, is a Banach space and then we will see various other properties, what are the𝐿𝑝

duals of the spaces, what happens when it is separable when it is reflexive and what are some𝐿𝑝

other properties of this.


