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We will now discuss Spaces. The Spaces, for Lebesgue constitutes a rich source of𝐿𝑝 𝐿𝑝 𝐿

examples and counterexamples in functional analysis. They also form an important class of



function spaces for the study of various topics in applied mathematics. For instance, to study

partial differential equations, we use Spaces and subspaces of these Spaces, which are𝐿𝑝 𝐿𝑝

special spaces called Sobolev spaces and so on. So, Spaces are very important, both in𝐿𝑝

analysis and functional analysis.

And we will study in this chapter some important properties of Spaces, from a functional𝐿𝑝

analytic point of view. Of course in the course in measure theory, there will be other emphasis.

But here we will look at some of the important things. So, what is the basic starting point? So,

we have measure space. What does this mean? is a set, non-empty always, though I may not𝑋

say it and then is a sigma algebra of subsets of . That means and empty set are in this.ζ 𝑋 𝑋

And if you have countable collection of elements here, then their union is also a member of . Soζ

it is closed and a countable union and it is closed under complementation. If , is also in .𝐴∈ζ 𝐴𝑐 ζ

So, this is the basic collection on which one defines a measure. So, is a measure defined on setsµ

in . So this is a standard measure. So, those who are not completely familiar with measureζ

theory, I recommend that you look at the first chapter in the book on functional analysis, Trim

series 52 which I mentioned in the beginning of this course.

There, there is a rapid introduction to measure spaces, at least the important results which we

will use are all stated there, though not proved. So now, you take , real value measurable𝑓: 𝑋→𝑅

function. So, if you know something on measure theory, you know what. So, inverse image of

sets of the form, so are members of , so for every , that is a measurable𝑓−1(− ∞, α] ζ α∈𝑅

function. So, is a real value measurable function.𝑓

There are many equivalent forms of this. This one in particular. So, let and then1≤𝑝 < ∞

define, so I am going to very suggestively put the symbol . So we say that,‖𝑓‖
𝑝

=  
𝑋
∫ |𝑓|𝑝 𝑑μ( )

1
𝑝

is integrable if . Now, so if you say we say integrable, if , we say𝑓 𝑝 ‖𝑓‖
𝑝

< ∞ 𝑝 = 1 𝑝 = 2

square integrable and so on. So next, let be positive and we say that, we denote by𝑀

.𝑓| | > 𝑀{ } = 𝑥∈𝑋: 𝑓 𝑥( )| | > 𝑀{ }



So then, is the smallest , so , so this is set and because of the‖𝑓‖
∞

𝑀 𝑖𝑛𝑓⁡{𝑀 > 0: μ( 𝑓| | > 𝑀{ })

various properties of measurable functions, this will be measurable. That means you can define

its measure, so . So, is such that it is almost an upper bound. If ,µ 𝑓| | > 𝑀{ }( ) = 0} 𝑀 𝑓 𝑥( )| |≤𝑀

for almost every point , except it may be violated on a set of measure . Now you take the𝑥 0

smallest such , so you call the infimum.𝑀

So we say that, is essentially bounded if . So essentially, why do you say𝑓 ‖𝑓‖
∞

<+ ∞

essentially bounded, it may not be, it may take infinite values or it may be unbounded in some

places, but that where it is so, is essentially, is a set of measures and therefore negligible in the0

sense of measure theory. So now, we have the proposition. So, if , we say and𝑝 = 1 𝑝⋆ = ∞

vice versa. If , and if , then is the conjugate exponent. So𝑝 = ∞ 𝑝⋆ = 1 1 < 𝑝 < ∞ 𝑝⋆

.1
𝑝 + 1

𝑝⋆ = 1
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So, now we meet an old friend,

Proposition (Holder’s inequality): So and conjugate exponent. If is1≤𝑝 < ∞ 𝑝⋆ 𝑓 𝑝

integrable, is integrable or essentially bounded, does not matter, I already find , so that I𝑔 𝑝⋆ 𝑝⋆



do not have to go ahead and redo it again. Then, . So this is very similar to
𝑋
∫ 𝑓𝑔| | 𝑑μ≤‖𝑓‖

𝑝
‖𝑔‖

𝑝⋆

the Holder inequality which we did before.

Proof: So if , then . So, . can be brought out by its essential supremum,𝑝 = 1 𝑝⋆ = ∞
𝑋
∫ 𝑓𝑔| | 𝑑μ 𝑔

so and that is equal to . So that is completely proved. So,
𝑋
∫ 𝑓𝑔| | 𝑑μ ≤ ‖𝑔‖

∞
𝑋
∫ 𝑓| | 𝑑μ ‖𝑔‖

∞
‖𝑓‖

1

now let us assume that . So, we can also assume that and are non-zero, because1 < 𝑝 < ∞ 𝑓 𝑔

even if one of them is then there is nothing to prove in this inequality. So, we have that, if you0

remember the very first lemma which we proved in this course, so

. So, this is the generalized A.M. G.M. inequality which we have𝑓 𝑥( )𝑔 𝑥( )| | ≤ |𝑓(𝑥)|𝑝

𝑝 + |𝑔(𝑥)|𝑝⋆

𝑝⋆

proved in the very first lecture in this series. So now you assume that ,‖𝑓‖
𝑝
= ‖𝑔‖

𝑝⋆ = 1

assume. So, if we integrate this inequality on both sides, you get is less than equal to
𝑋
∫ 𝑓𝑔| | 𝑑μ 1

𝑝

(which is 1), plus (which is also 1). And therefore
𝑋
∫ |𝑓(𝑥)|𝑝 1

𝑝⋆
𝑋
∫ |𝑔(𝑥)|𝑝⋆

and in the general case, so now in general, you take and
𝑋
∫ 𝑓𝑔| | 𝑑μ ≤ 1

𝑝 + 1

𝑝⋆ = 1 𝑓
 ‖𝑓‖

𝑝

𝑔
‖𝑔‖

𝑝⋆

and apply this inequality, then you will get straight away the Holder inequality.

Remark: If , then Holder equals to Cauchy Schwarz’s inequality.𝑝 = 𝑝⋆ = 2
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So, the next proposition is Minkowski’s inequality. Again we are going to follow what we did

earlier.

Proposition (Minkowski’s inequality): So, . and are integrable (essentially1≤𝑝≤∞ 𝑓 𝑔 𝑝

bounded if ) and then is also integrable and . So, this𝑝 = ∞ 𝑓 + 𝑔 𝑝 ‖𝑓 + 𝑔‖
𝑝

≤ ‖𝑓‖
𝑝

+ ‖𝑔‖
𝑝

is the triangle inequality which we proved for vectors, now we are proving it for functions. So

again, we can assume,

Proof: Assume . Because otherwise the result is trivially true. There is nothing to do.𝑓 + 𝑔≠0

Now if you take the function , then this is convex for . So,𝑡↦|𝑡|𝑝 1≤𝑝≤∞

. So, this just comes from the convexity, the|𝑓 𝑥( ) + 𝑔(𝑥)|𝑝 ≤ 2𝑝−1( 𝑓 𝑥( )| |𝑝 + |𝑔(𝑥)|𝑝)

midpoint. So, if you had by , you have power less than one half of this. So, the will cross2 𝑝 2𝑝

multiply and you will get this. So, this is just the definition of convexity of this function and you

will get this. So, if you integrate both sides, so integrating, we get is integral. If ,𝑓 + 𝑔 𝑝 𝑝 = ∞

then of course and each is essentially bounded, so implies𝑓 𝑥( ) + 𝑔 𝑥( )| | ≤ 𝑓 𝑥( )| | + |𝑔(𝑥)|

essentially bounded. So, there is nothing to group.

So, now if or , so you get norm, so if , you will get from this that is𝑝 = 1 ∞ 𝑝 = ∞ ‖𝑓 + 𝑔‖
∞

trivially less than and if , the same thing tells,‖𝑓‖
∞

+ ‖𝑔‖
∞

𝑝 = 1



, that is . So, all that is fine. So, we
𝑋
∫ 𝑓 + 𝑔| | 𝑑μ≤

𝑋
∫ 𝑓| | 𝑑μ +

𝑋
∫ 𝑔| | 𝑑μ ‖𝑓 + 𝑔‖

1
≤ ‖𝑓‖

1
+ ‖𝑔‖

1

now only have to look at the case .1 < 𝑝 < ∞
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So, we now assume that . So, we are now going to just as we did in the earlier, we1 < 𝑝 < ∞

are going to apply Holder inequality. So, you write

. So, we are now going to apply
𝑋
∫ 𝑓 + 𝑔| |𝑝 𝑑μ≤ 

𝑋
∫ 𝑓 + 𝑔| |𝑝−1|𝑓| 𝑑μ +

𝑋
∫ 𝑓 + 𝑔| |𝑝−1|𝑔| 𝑑μ

Holder’s inequality to each one of the terms on the right hand side. So what is, so let us take

. So by Holder’s inequality this will be less than equal to of
𝑋
∫ 𝑓 + 𝑔| |𝑝−1|𝑓| 𝑑μ ‖𝑓‖

𝑝
‖ · ‖

𝑝⋆

whatever follows. So, . But is , which is just , so(
𝑋
∫ 𝑓 + 𝑔| |(𝑝−1)𝑝⋆

 𝑑μ)

1

𝑝⋆

(𝑝 − 1)𝑝⋆ 𝑝𝑝⋆ − 𝑝⋆ 𝑝

this is equal . But that is nothing, but . So, you get that‖𝑓‖
𝑝
(

𝑋
∫ 𝑓 + 𝑔| |𝑝 𝑑μ)

1

𝑝⋆

‖𝑓‖
𝑝
 ‖𝑓 + 𝑔‖

𝑝

𝑝

𝑝⋆

 

norm, the left hand side, is less than equal to, apply this to each of the terms, I will get‖𝑓 + 𝑔‖
𝑝
𝑝 



. So now, since it is not 0, I can divide this here. So, now(‖𝑓‖
𝑝

+ ‖𝑔‖
𝑝
)‖𝑓 + 𝑔‖

𝑝

𝑝

𝑝⋆

𝑝 1 − 1

𝑝⋆( )
and that is nothing but . is and so that is equal to 1. So, if I divide it, so I get1 1 − 1

𝑝⋆
1
𝑝  

. And that is exactly the Minkowski’s inequality.‖𝑓 + 𝑔‖
𝑝

≤ ‖𝑓‖
𝑝

+ ‖𝑔‖
𝑝
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So, now what have we seen, so if you take this . Then, it satisfies all the properties of a‖𝑓‖
𝑝

norm except, there is only one property which it does not follow. Norm does not imply‖𝑓‖
𝑝

= 0

. So, it only implies implies except possibly on a set of measure . That𝑓 = 0 ‖𝑓‖
𝑝

= 0 𝑓 = 0 0

is we say almost everywhere. That means except on a set of measure , that is why it is𝑓 = 0 0

true. So, you do not have this, so you do not have a norm of this. So what do we do? Whenever

we have such a difficulty, we question things out.
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So we say that if almost everywhere. That means except on possibly on a set𝑓~𝑔 𝑓 = 𝑔 𝑓 = 𝑔

of measure . So, this is certainly reflexive. This is transitive and symmetric and therefore you0

have this in equivalence relation and it partitions the set of measurable integrable functions𝑝

into equivalence classes and also if you have that , and then you have𝑓
1
~𝑔

1
𝑓

2
~𝑔

2

and . And, so and also , then you also have .𝑓
1

+ 𝑓
2
~𝑔

1
+ 𝑔

2
α𝑓

1
~α𝑔

1
𝑓~𝑔 ‖𝑓‖

𝑝
= ‖𝑔‖

𝑝

Therefore, you take any equivalence, so take equivalence classes with respect to equality almost

everywhere. So, this relationship tilde is equality almost everywhere, so with respect to this



relation, you take the equivalence classes and you define, so if I take , you define as‖𝑓‖
𝑝

‖𝑓‖
𝑝

for any belonging to the equivalence class . So, it does not matter which representative you𝑓 𝑓

take, so all of them will be the same. Then of course it becomes a norm, because if ,‖𝑓‖
𝑝

= 0

then , then of course is the function almost everywhere and therefore you take it as‖𝑓‖
𝑝

= 0 𝑓 0

it belongs to the equivalence class and therefore it becomes a norm. Therefore we make the0

following definition.

Definition: So, measure space. . So this, let me say first, . So, the space(𝑋, ζ, μ) 1≤𝑝≤∞ 𝑝 < ∞

of all equivalence classes under the equivalence relation defined by equality almost everywhere

of all integrable functions is a norm linear space with the norm . How is it defined? In𝑝 ‖ · ‖
𝑝

given any equivalence class, then you take any representative, and then evaluate the for‖ · ‖
𝑝

that. So, this space is denoted . Similarly, the space of equivalence classes of essentially𝐿𝑝(μ)

bounded functions is a norm linear space with norm and is denoted . ‖ · ‖
∞

𝐿∞(μ)

So, these are the spaces. So when we talk of course, we will not really make a fuss and talk about

equivalence classes. We will say a function is in . What do we mean? We mean that we are,𝐿𝑝

this function which we are talking of is a representative, is integrable, or is essentially the𝑝

bound depending on what the value of is and it is representative of an equivalence class in that𝑝

space.

Now, however we will not, we will just say it is a function, because we are going to work all our

computations via representatives only and it will not matter which representative we are taking.

Because any two will be equal almost everywhere and they will not make a difference in all our

calculations which are mostly integration and therefore, if it is except on the set of measure ,0 0

the integral is automatically . So.0


