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So, it is time to do some exercises. So the first one,

Problem 1: So Banach and subspace. Then, so let us say closed subspace. So that it is𝑉 𝑊⊂𝑉

also a Banach space. Then, the weak topology on is the same as the topology induced on𝑊 𝑊

by the weak topology on .𝑉

Solution: So, let us take , weakly open set in . So, . So, what is this going to be? So,𝑈 𝑊 𝑥
0
∈𝑈 𝑈

would be of the form, , so this is neighborhood of and{𝑥∈𝑊:   〈𝑓
𝑖

𝑥 − 𝑥
0( )〉| | < ϵ, 1≤𝑖≤𝑘} 𝑥

0

. So, this is how the neighborhood will look like. But then, by the Hahn Banach theorem,𝑓
𝑖

∈ 𝑊⋆

there exists , such that is the same as and therefore𝑓
𝑖

~
∈ 𝑉⋆  𝑓

𝑖

~
|

𝑊
𝑓

𝑖

. So, every weakly open set is, weakly open set in𝑈 = 𝑥∈𝑉:  〈𝑓
𝑖

~
𝑥 − 𝑥

0( )〉|||
||| < ϵ, 1≤𝑖≤𝑘{ }∩𝑊

and therefore it is open in the induced topology. Conversely if you have weakly open set in𝑉∩𝑊



the induced topology, then the restriction of, if you take any open set like this and then any 𝑓
𝑖

~

when restricted to is a continuous linear function on and therefore it will work out to be𝑊 𝑊

like this. Therefore you have the weakly open sets in are precisely the weakly open sets in𝑊

and therefore you have that it is the same as induced topology.𝑉∩𝑊

So next one,

Problem 2: is Banach and is a subspace. Then the norm closure is the same as the𝑉 𝑊⊂𝑉 𝑊

weak closure . So, there is no difference between the weak closure of and the norm𝑊
𝑤𝑒𝑎𝑘

𝑊

closure of the .𝑊

Solution: So, . is a closed subspace and therefore it is weakly closed. So, it is weakly𝑊⊃𝑊 𝑊

closed set containing . Therefore will also contain , because that is the smallest𝑊 𝑊 𝑊
𝑤𝑒𝑎𝑘

closed subset in the thing. Similarly, and it is weakly closed, implies of course norm𝑊
𝑤𝑒𝑎𝑘

⊃𝑊

closed and therefore . So, you have both inclusions and therefore you have that the𝑊
𝑤𝑒𝑎𝑘

⊃ 𝑊

two closures are the same.
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Problem 3: is Banach and is a subspace, then is closed in .𝑉 𝑊⊂𝑉 𝑊⊥ 𝑊⋆ 𝑉⋆

Solution: What is ? . So, this is nothing but .𝑊⊥ 𝑊⊥ = {𝑓∈ 𝑉⋆: 𝑓 𝑥( ) =  0,  ∀ 𝑥∈𝑊} ⋂
𝑥∈𝑊

𝐾𝑒𝑟(𝐽
𝑥
)

But then is continuous, that is how the weak star topology is defined. So, is𝐽
𝑥

𝑊⋆ 𝐾𝑒𝑟(𝐽
𝑥
) 𝑊⋆ 

closed, arbitrary intersection of closed set is closed, so this is closed.𝑊⋆ 

Problem 4: Weak topology on , weak star topology on make the spaces locally convex𝑉 𝑉⋆

topological vector spaces.

Solution: So, neighborhood in , neighborhood in , clearly convex. So, every point has𝑊 𝑉 𝑊⋆ 𝑉⋆

a convex neighborhood. If you just see the definition, you can check that it is, they are clearly

convex sets. So, only to show addition and scalar multiplication are continuous. So, but if you

take is norm continuous implies weakly continuous. Similarly, is𝑥, 𝑦( ):  𝑉×𝑉↦𝑥 + 𝑦 𝑥↦α𝑥

weakly continuous. Therefore weak topology, so with weak topology is a locally convex𝑉

topological vector space. Now, what about . So, let , and then, you take𝑉 ℎ∈𝑉⋆ ℎ = 𝑓 + 𝑔 𝑊⋆

neighborhood of . How does it look like?ℎ
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and are arbitrary elements in . So, now you𝑈 = ϕ∈𝑉⋆:   〈ℎ − ϕ, 𝑥
𝑖
〉| | < ϵ, 1≤𝑖≤𝑘{ } 𝑥

𝑖
𝑉

consider the following set in the product space. The weak topology, because of the dual space is

nothing but the product of the duals. Therefore the weak topology on the product space is

nothing but the product to the weak topologies. So now let us consider the following,

. So this product, so this is a weakϕ∈𝑉⋆:   〈𝑓 − ϕ, 𝑥
𝑖
〉| | < ϵ

2  { } × ψ∈𝑉⋆:   〈𝑓 − ψ, 𝑥
𝑖
〉| | < ϵ

2  { }
open set in . So then you have𝑉⋆ × 𝑉⋆ 〈ℎ − (ϕ + ψ), 𝑥

𝑖
〉| |≤  〈𝑓 − ϕ, 𝑥

𝑖
〉| | +   〈𝑔 − ψ, 𝑥

𝑖
〉| |

and therefore this is less than , that is . Therefore this shows, that addition isϵ
2 + ϵ

2 ϵ 𝑊⋆

continuous. Because we take any neighborhood, you can find a neighborhood of and , such𝑓 𝑔

that this is true. Therefore is the neighborhood of ,ϕ∈𝑉⋆:   〈𝑓 − ϕ, 𝑥
𝑖
〉| | < ϵ

2  { } 𝑓

is the neighborhood of and the product is contained in theψ∈𝑉⋆:   〈𝑓 − ψ, 𝑥
𝑖
〉| | < ϵ

2  { } 𝑔

neighborhood of and therefore addition is continuous and similarly scalar multiplication.ℎ

Therefore with weak star topology also locally convex topological vector space. So, I have𝑉⋆

made a remark earlier, that we have a locally convex topological vector space, then all the Hahn

Banach theorems can be reproduced and therefore the Hahn Banach theorems are all there.
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So now, let us do the following,

Problem 5: subspace, Banach. Show that . So if you recall, we have shown𝑍⊂𝑉⋆ 𝑉 𝑍
𝑊⋆

= 𝑍⊥⊥

that if , then , this is the norm closure. So in general you cannot say that they are𝑍⊂𝑉⋆ 𝑍⊥⊥ ⊃ 𝑍

equal. But it happens that is a closure. 𝑍⊥⊥ 𝑊⋆ 

Solution: So, is closed, we have already seen this in the third exercise, exercise number𝑍⊥⊥ 𝑊⋆

3 and then it contains also. So, . So now, assume that this is not equal. Assume𝑍 𝑍⊥⊥ ⊃ 𝑍
𝑊⋆

. So, by Hahn Banach theorem, so I told you that Hahn Banach theorem is𝑓
0
∈ 𝑍⊥⊥∖ 𝑍

𝑊⋆

applicable, so Hahn Banach applicable to locally convex topological vector spaces and therefore

there exists a continuous linear function such that and . So we want to get aϕ 𝑓
0( )≠0 ϕ|

𝑍
𝑊⋆≡0

contradictory. But what is , a continuous linear functional in the topology, we saw the onlyϕ 𝑊⋆

possibility is that it gives the form of . So we said, topology is formed in terms of the ’s,𝐽
𝑥

𝑊⋆ 𝐽
𝑥

but we later proved a proposition that every continuous linear function with respect to the weak

star topology has to be of the form some . So, we have and for all ,𝐽
𝑥

𝑓
0

𝑥( )≠0 𝑓 𝑥( ) = 0 𝑓∈𝑍 𝑍
𝑊⋆

, so in particular it is true for all . So, this implies that and this implies since , we𝑍 𝑥∈𝑍⊥ 𝑓
0
∈ 𝑍⊥⊥

have which is a contradiction, because we assume that it is not 0. Therefore this is a𝑓
0

𝑥( ) = 0

contradiction and that proves the problem.
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Problem 6: Banach and is linear. This is linear. The following are equivalent.𝑉, 𝑊 𝑇: 𝑉→𝑊

1. in in . So this is, that is .𝑥
𝑛
→𝑥 𝑉 ⟹𝑇𝑥

𝑛
→𝑇𝑥 𝑊 𝑇∈𝐿(𝑉, 𝑊)

2. in in and𝑥
𝑛
⇀𝑥 𝑉 ⟹𝑇𝑥

𝑛
⇀𝑇𝑥 𝑊

3. in in .𝑥
𝑛
→𝑥 𝑉 ⟹𝑇𝑥

𝑛
⇀𝑇𝑥 𝑊

So here, all these three statements are equivalent.

Solution: : So, implies is weakly continuous. Therefore, implies1⟹2 𝑇∈𝐿(𝑉, 𝑊) 𝑇 𝑥
𝑛
⇀𝑥 

, so that implies . Now : So implies , that is given. So, if𝑇𝑥
𝑛
⇀𝑇𝑥 1⟹2 2⟹3 𝑥

𝑛
⇀𝑥 𝑇𝑥

𝑛
⇀𝑇𝑥

in , this implies and therefore this implies that . So, that is just the𝑥
𝑛
→𝑥 𝑉 𝑥

𝑛
⇀𝑥 𝑇𝑥

𝑛
⇀𝑇𝑥

statement. So, then : So, what is now given? implies . So, we want to show3⟹1 𝑥
𝑛
→𝑥 𝑇𝑥

𝑛
⇀𝑇𝑥

is continuous. So, let converge to some . So this implies and the weak topology𝑇 {𝑇𝑥
𝑛
} 𝑦 𝑇𝑥

𝑛
⇀𝑦

is Hausdorff, so . So , implies . So, that means is closed.𝑦 = 𝑇𝑥 𝑥
𝑛
→𝑥 𝑇𝑥

𝑛
⇀𝑦 𝑦 = 𝑇𝑥 𝐺(𝑇)

Implies . So, all the three are equivalent.𝑇∈𝐿(𝑉, 𝑊)
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Problem 7: So Banach and linear. Then show that , if and only if is𝑉, 𝑊 𝑇: 𝑉→𝑊 𝑇∈𝐿(𝑉, 𝑊) 𝑇

weakly continuous. So, this is the theorem which we have already proved. So, now we are going

to say,

(a) Show that from with the norm topology to with the weak topology continuous if and𝑇 𝑉 𝑊

only if . So, we are really showing that it does not matter as far as linear maps are𝑇∈𝐿(𝑉, 𝑊)

concerned, the continuity in the standard sense is the same, whatever the other topologies we are

going to put.



Solution: So, . So we want to show, it is continuous. So, we are proving the reverse𝑇∈𝐿(𝑉, 𝑊)

part. So, we want to show that this is continuous. So, let us say weakly open in . So implies𝑈 𝑊

is norm open and that implies is norm open. Therefore, is𝑈 𝑇−1(𝑈) 𝑇: (𝑉, ‖ · ‖)→(𝑊, 𝑤𝑒𝑎𝑘)

continuous. What about the other way around? So, is given to be𝑇: (𝑉, ‖ · ‖)→(𝑊, 𝑤𝑒𝑎𝑘)

continuous. So to show, . So, let us take in , then is continuous, therefore it𝑇∈𝐿(𝑉, 𝑊) 𝑥
𝑛
→𝑥 𝑉 𝑇

implies that in . And this is, if I see statement 3 of exercise 6 and therefore that𝑇𝑥
𝑛
⇀𝑇𝑥 𝑊

implies statement one, so in by the closed graph theorem, that is what we saw and𝑇𝑥
𝑛
→𝑇𝑥 𝑊

therefore we have this implies to .𝑇∈𝐿(𝑉, 𝑊)

(b) What happens if we interchange topologies?

Solution: So, let us say linear and continuous. So, let us take𝑇: 𝑉→𝑊 𝑇: (𝑉, 𝑤𝑒𝑎𝑘)→(𝑊, ‖ · ‖)

in . So, this implies that in and therefore that implies as𝑥
𝑛
→𝑥 𝑉 𝑥

𝑛
⇀𝑥 𝑉

, so . So, this implies that . Converse not true. So,𝑇: (𝑉, 𝑤𝑒𝑎𝑘)→(𝑊, ‖ · ‖) 𝑇𝑥
𝑛
→𝑇𝑥 𝑇∈𝐿(𝑉, 𝑊)

this is the only case where you have a problem. So, you take identity map

. So, . But you take open unit ball in , which is𝐼: 𝑉, 𝑤𝑒𝑎𝑘( )→(𝑉, ‖ · ‖) 𝐼∈𝐿 𝑉, 𝑉( ) = 𝐿(𝑉) 𝐷 𝑉

norm open, but is not weakly open as we saw, therefore is not continuous. So, you have a𝐷 𝐼

norm continuous linear map, but it will not be continuous from the weak topology to the norm

topology. So, that is.
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Problem 8: Let , we define by . So . So you take,𝑇:  𝐶
0

→ 𝑙
1

𝑇𝑥 =
𝑥

𝑛

𝑛2 𝑥 = (𝑥
1
, 𝑥

2
, ⋅, ⋅, ⋅, 𝑥

𝑛
, ⋅, ⋅, ⋅)

coordinate wise I am going to define. So then, , and is not closed. So, is the𝑇∈ 𝐿(𝐶
0
, 𝑙

1
) 𝑇(𝐵) 𝐵

closed unit ball. So, it is not necessary for closed sets to go to closed sets if you have this.

Solution: So, let us take . So you are taking , so and that is less than‖𝑇𝑥‖ 𝑙
1

‖𝑇𝑥‖ =
𝑛=1

∞

∑
𝑥

𝑛| |
𝑛2

equal to maximum of the ’s that is and I am sure all of you know what this is, so𝑥
𝑛

‖𝑥‖
∞

𝑛=1

∞

∑ 1

𝑛2

. Therefore, . Now you take in , so you take‖𝑥‖
∞

𝑛=1

∞

∑ 1

𝑛2 = π2

6 ‖𝑥‖
∞

𝑇∈ 𝐿(𝐶
0
, 𝑙

1
) 𝐵

. So because it is terminally and𝑥(𝑛) = (1, 1, ⋅, ⋅, ⋅, 1, 0, 0, ⋅, ⋅) = 1, 1, ⋅, ⋅, ⋅, 1, 0, 0, ⋅, ⋅( ) ∈ 𝐶
0

0

then . Therefore . So, now you look at and‖𝑥(𝑛)‖
∞

= 1 𝑥(𝑛)∈𝐵 𝑇𝑥(𝑛) = 1, 1

22 , 1

32 , ⋅, ⋅, ⋅, 1

𝑛2 , ⋅, ⋅, ⋅( )
what this is converge to in . So this converges in to . So this, so the𝑙

1
𝑙

1
1, 1

22 , 1

32 , ⋅, ⋅, ⋅, 1

𝑛2 , ⋅, ⋅, ⋅( )
image, so and it converges to something in , but is not in𝑇𝑥(𝑛)∈𝑇(𝐵) 𝑙

1
1, 1

22 , 1

32 , ⋅, ⋅, ⋅, 1

𝑛2 , ⋅, ⋅, ⋅( )
the range. Because if it has to be in the range of , there is only one particular candidate, namely𝑇



and that is not an element of . So this is, this vector is not in the ,, therefore(1, 1, 1, ⋅, ⋅, ⋅) 𝐶
0

𝑅(𝑇)

is norm closed.𝑇(𝐵)
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However if,

Problem 9: Suppose is reflexive and is a norm linear space, is a Banach space and𝑉 𝑊 𝑊

, then is closed. So, what is ? Closed unit ball and I hope I said that in the𝑇∈𝐿 𝑉, 𝑊( ) 𝑇(𝐵) 𝐵

previous exercise also. Yeah, closed, is a closed unit.𝐵

Solution: So is continuous implies is weakly continuous, reflexive, so this implies is𝑇 𝑇 𝑉 𝐵

weakly compact. is weakly continuous, continuous image of compact, since is compact, so𝑇 𝐵

is weakly compact. Weak topology is Hausdorff, so is weakly closed implies is𝑇(𝐵) 𝑇(𝐵) 𝑇(𝐵)

norm closed.

So, the reflexivity makes all the difference.

Problem 10: Let subspace. Then reflexive implies is finite dimensional. So, the only𝑊⊂𝑙
1

𝑊 𝑊

reflexive subspaces of are the finite dimensional subspaces. There are no other subspaces.𝑙
1



Solution: subspace which is reflexive. So, that means closed unit ball is weakly𝑊⊂𝑙
1

𝐵
𝑊

compact. is the closed unit ball. So then, any sequence in has a weakly convergent𝐵
𝑊

𝐵
𝑊

subsequence. Because we saw in the reflexive space, any sequence contains, it is a converse of

this was the Eberlein Scholian theorem. So, we proved of course that if you have a reflexive

space, any bounded sequence has a weakly convergence subsequence. So, now weakly

convergent means what? So , that means what, for every , .𝑓 𝑥 𝑛( )( )→𝑓 𝑥( ) 𝑓∈𝑊⋆ 𝑓 𝑥 𝑛( )( )→𝑓 𝑥( )

But then, this implies for every , restriction of functions are also continuous linear𝑓∈𝑉⋆ 𝑉⋆ 

functions in . So, we have . Therefore in also. So implies,𝑊 𝑓 𝑥 𝑛( )( )→𝑓 𝑥( ) 𝑓 𝑥 𝑛( )( )→𝑓 𝑥( ) 𝑉

weakly convergent in and by Schur’s lemma, this implies norm convergence. So, any sequence𝑙
1

has a norm convergent subsequence and this implies that is norm compact and that implies𝐵
𝑊

is finite dimensional.𝑊
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So, I would like you to, these are very simple exercises again, so I would like you to try it

yourself.

Exercise: (1) So 1, then is separable.1≤𝑝 < ∞ 𝑙
𝑝



You might have even used this. So, all you have to do is take finitely supported sequences, that is

after some time, those are dense and then show that rational sequence are dense in that and0 𝑙
𝑝

that finite rational sequences are countable and that will be dense. So, that will be the solution for

that.

(2) Similarly is separable. So, any continuous function can be uniformly approximated𝐶([0, 1])

by a polynomial that is the Weierstrass theorem. So, then you approximate that uniformly by

polynomial with rational coefficients. So, you just have to write down the arguments correctly

and that is it. So with this, we wind up this chapter. Thank you.


