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Uniformly Convex Spaces
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We will now talk about uniformly convex spaces. So, uniform convexity is a condition on the
norm so it tells you something about the geometry of the space. So, if you look at the ball
with the two norms in the plane then it bulges uniformly in all directions. And if you look at

the ball in the one norm then it is something like this.

It is a diamond and if you look at it in the infinity norm then of course you get a square. So,
these have flat portions on the boundary whereas this one bulges uniformly. Uniform
convexity in some sense analytically quantifies what is this uniform bulging in all directions

that is the thing.
So, we have the following definition.

Definition: A non-linear space V is uniformly convex if for every € > 0 there existsa § > 0

22| < 1 — 8. So, this is

such that if x, y€V satisfy [|x||<1, ||¥||I<1, ||x — y|| > €. Then ||



the definition so let us understand it briefly. So, if you look what it is essentially though we

have said ||x||<1, ||y||<1 actually the important thing happens near on the boundary.

Suppose, I have two points on the boundary of the unit ball so that means
x|l = 1, ||lyl| = 1. Then it says that the midpoint must be away from the boundary in a
uniform fashion irrespective of the positions of the two points x and y. If you have x and y as
long as the relative distance is bigger than the bigger than € then the midpoint should be

sufficiently far away from the boundary.

So, that is what is given by this. So, if you look at these points the midpoint is also on the

boundary so it would not satisfy this condition on the l1 and [ cases. But, in the l2 case you

we can see that it definitely satisfies. So, this means, so this is what we mean by uniformly

bulging in all directions.

If you have two points on the boundary which are a certain distance apart then irrespective of
the position of the two points the midpoint must be uniformly away from the boundary at a

certain distance. So, so example

N N N . .
Example: So l1 and [ that means R~ with the || - ||1 or || - ||_ are not uniformly convex.

In fact they are not even strictly convex which I introduced a little earlier.

Example: So, 112V is uniformly convex. So, let us take x, y€ l12V this is the R" with |-l 5 then

2 2
this straightforward calculation so ||x+Ty|| + ||%|| = %(”x”z + ||y||§). This is called
2 2
the parallelogram identity or the Apollonius’s theorem from plane geometry. So, if you have
so this is x and y then this will be x plus if you take the midpoint here then this will be LZY ,

this will be x—;L in length and therefore this is the standard theorem in plane geometry known

as Apollonius theorem or this is also called the parallelogram law. Because, you can complete

the parallelogram and say that half the diagonal square on half the diagonal is equal to one



half of the sum of the squares on the other two sides. So, that is this theorem so this is

straightforward checking you can do it.
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So, then if ||x||231, ||y||2S1, [|x — y||2 > €. Then from this identity it follows that

2

2
I %”2 <1- GT =1 - 8)2. And where & is now given in a straightforward fashion by

2
1—1/1 - ET. So, once you have this, you have uniform convexity.

So, we can also show in fact l2 for the same reason. In l2 also you have the same identity so
you can check it. So, [ 5 is uniformly convex lp is uniformly convex if 1 < p < oo, So, if in

fact it is easy we will see this later if 2 < p < oo and then difficultif 1 < p < 2 so we will

see this in a when the time comes when we do lp spaces. So, you can see that these spaces are

all uniformly convex. Now, the important theorem why are we concerned about uniformly

convex spaces, so theorem this is the major theorem here:

Theorem: V uniformly convex Banach space. Then V is reflexive. So, you see the geometry

of the norm tells you when the space is reflexive.



Proof: So, J: V-V canonical embedding and to show J is onto. So, that is to show
J(B) = B™". Where according to our notation B is the closed unit ball in V, B is the closed
unit ball in V™", Now, J is an isometry so and so J(B) is closed so sufficient to show J(B) is

dense in B™". Then J(B) will be, J(B) is closed so J(B) = J(B),J(B)is B™".SoJ(B)= B

So, this is what we want to show, we want to show that given any continuous linear

functional on the dual space namely a member of B™" which is in V" you can always

approximate it by something from J(B) as much as close this.

So, let d)EB** and we assume that ||| = 1. Now, if you prove it for ||p|| = 1 then so to

show for every € > 0 there exists an x€B such that ||¢ — ]x|| < €. So, this is what, this is

. *k
in V' of course.

This is what we want to show, so this is what we mean by dense. Now, I have said for
[|d|] = 1 but then once you show it for ||p|| = 1 then by scaling argument you can easily

show it for any other ¢ with ||||<1. So, ||p|| = 1 follows by elementary scaling arguments.

Namely, the theorem will be true for —%_ and then you have to do it from there you can

llll
easily deduce it for any ¢.
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So, now we are going to assume that. So, € given, so let § correspond to € in the definition of
uniform convexity. So, you choose that particular . Now, choose f€ V" such that d(f) sod

is a functional on V*, |||l = 1 and therefore we can choose d(f) > 1 — % and ||f||V* =1

. So, ||f||V* = 1 because what is ||}]|, it is a supremum of ¢ (f) or |d(f)] if you like but then

d(f), d(— f) together give you |p(f)|. So, supremum of the ¢ (f) over ||f||V* = 1 will be

equal to 1. So, you can always find an f because that is bigger than 1 — %.

So, now you define U = {EEV**: 1§ — d)f|I < %} So, f is a single point in the pre space

so V" we are working on so this is U is w” neighbourhood of ¢ in v So, w’ open set and

J(B) but what do you know about J(B). J(B) in W is equal to B"". This we have already

seen several and used in previous occasions also. Therefore, there exists an x€B such that
]er . Because, every neighbourhood must intersect J(B) and therefore in the W" sense and

therefore there exists an x such that this holds.

So, if ||] — ¢||<e we are through. We said strictly less than but less than or equal to does
X

not matter so we are through. So, so assume this is not true so || ]x — ¢|| > €. That means

what that is p& ]x + eB”. B" is a unit ball €B™ is the closed set of all vectors whose norm
is less than or equal to €. You are translating this ball by ]x, ¢ does not belong to this means

what || — ]x|| must be bigger than strictly bigger than € and that is the condition which we

have put in here. So, this now B iswW" compact because of the Banach Alaoglu theorem.

And therefore, it is by since the W is Hausdorff implies B™ is W’ closed. So, J + eB”" is

just a translation of a closed set. So, this also W closed. So, complement is w’ open and ¢

belongs to this complement because we are assuming ¢ is not in that thing. Therefore there

* ook Cc
exists a W open neighbourhood U ) of VV such that U L also is contained in (]x +€eB ).
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Then again UNU ) isw’ open and so by the w’ density of J(B) in B”" there exists x1EB such

that ](xl)e UNU . So, what do you mean by this? So, |p(f) — f(x)| < - Because, f(x) is

nothing but J (f). So, d(f) — J (f).J €U and therefore you have [p(f) — fF()| < ),

1

is also in U so |<1)(f) — f(x1)| < %.
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So, add these two from this you get that 2¢d(f) < 6 + |f(x + x1)| <6+ |x + x1||.

Because, ||f]|. So, you have this. Now, what is ¢(f) we have chosen it in such a way that is

8

2—-06<6+ |x+ x1||. Because, we have chosen ¢(f) in that fashion ¢(f) > 1 — —-.

1

x+x
Therefore, [[——|| > 1 — 8. But, x € U ) that we should we have not used that fact and

that implies ||]x —J || > ethatis ||x — X, || > €. And we also know that ||x||<1, ||x1||S1

X
1

because both of them are elements of B. So, these two and uniform convexity implies that

XT+X
+1

l—

|| < 1 — & and that is a contradiction. So, this is a contradiction.

And therefore we have we have that norm of || ]x — || has to be less than equal to € and

therefore J(B) is dense in B”". That is J(B) which is closed so J(B) = J(B) which is equal to

B So, J is onto. So, B is reflexive. So, this proves the theorem completely.
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So, now let us that suppose {xn} converges to x in norm then this implies that {xn} converges

to x weakly this we have seen. And we have also seen that the converse is not true. We have



examples like {en} € l2 that goes to 0 weakly but, it cannot converge strongly. So, {xn}

converges to x in norm implies by continuity of the norm ||xn|| - |lx]|-

And obviously this converse is also not true you can have any set of vectors ||xn|| - ||x|| but
that does not mean that {xn} should go to x. But, if you combine these two relationships on

the right hand side, if these two things happen, namely if you have weak convergence and the
convergence of the norm then it means convergence in the norm. So, provided you are in a

uniformly convex space. So, proposition

Proposition: So V uniformly convex Banach space. And let X =X and let ||xn|| - ||x]|. Then
X =X that is ||xn — x||—0. Usually, this will be difficult to prove proving weak convergence
is will be relatively easier because you have to show that f (xn)—>f (x) for every linear

function.

And also showing that the norm converges will also be relatively easier and together these
two in a uniformly convex Banach space tells you that you have norm convergence so this is

a very useful result.

Proof: So nothing to prove if x = 0 because ||xn||—>0 that is exactly saying now xn—>0 in
norm. So, nothing to prove if x = 0. So, if x#0 so without loss of generality assume antO it

is true for n sufficiently large and therefore, we can assume this for all of them. So, now you

xn X

[l

define y, = and y = . Now, ||xn|| - ||x|| and X —X. Together these two imply that

EA]

y =Y. This you can check so all you have to do is take any linear functional and you have to

show that f (yn)—> f(y) for every yEV*. This is what we have to show and that is easy to

show because you are given these two things you can check it yourself.
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So, we have that y =y and now we have to show that y =Y. So, y =y therefore 1<||y|| is

y, 1ty

.. . . +y
less than or equal to lim inf. So, y =y implies that —>——y. Because, y =Y, also

goes

. Because, we know if something goes weakly

yty

n
1=

vty
But, ||yn|| and ||y|| are all 1. And therefore, by the triangle inequality || ——|| is always less

y.+y
than equal to 1 and therefore ||——]|| <1. Therefore, we have that all equality is there

throughout and therefore you have that || yn|| = |yl =

any & > 0 we have || || > 1 — & for all n>N. But, this means that ||y — y||<e for all

n=>N. Because, if it was strictly bigger than € that will contradict the uniform convexity. You

have |ly Il = llyll = 1, lly,

1 — § and that is not true. So, § corresponds to € in the definition of uniform convex. Now,

you take & corresponding to € in uniform convexity. Then || || > 1 — 6 for all n>N
implies that || y = y||<e that is y =y and this implies that X —X. And that completes your

proof of this theorem. So, we will next look at applications of these results to the calculus of

variations.






