
Functional Analysis
Professor S. Kesavan

Department of Mathematics
The Institute of Mathematical Sciences

Lecture No. 34
Uniformly Convex Spaces

(Refer Slide Time: 00:17)

We will now talk about uniformly convex spaces. So, uniform convexity is a condition on the

norm so it tells you something about the geometry of the space. So, if you look at the ball

with the two norms in the plane then it bulges uniformly in all directions. And if you look at

the ball in the one norm then it is something like this.

It is a diamond and if you look at it in the infinity norm then of course you get a square. So,

these have flat portions on the boundary whereas this one bulges uniformly. Uniform

convexity in some sense analytically quantifies what is this uniform bulging in all directions

that is the thing.

So, we have the following definition.

Definition: A non-linear space is uniformly convex if for every there exists a𝑉 ϵ > 0 δ > 0

such that if satisfy . Then . So, this is𝑥, 𝑦∈𝑉 ‖𝑥‖≤1,  ‖𝑦‖≤1, ‖𝑥 − 𝑦‖ > ϵ ‖ 𝑥+𝑦
2 ‖ < 1 − δ



the definition so let us understand it briefly. So, if you look what it is essentially though we

have said actually the important thing happens near on the boundary.‖𝑥‖≤1,  ‖𝑦‖≤1

Suppose, I have two points on the boundary of the unit ball so that means

. Then it says that the midpoint must be away from the boundary in a‖𝑥‖ = 1,  ‖𝑦‖ = 1

uniform fashion irrespective of the positions of the two points and . If you have x and as𝑥 𝑦 𝑦

long as the relative distance is bigger than the bigger than then the midpoint should beϵ

sufficiently far away from the boundary.

So, that is what is given by this. So, if you look at these points the midpoint is also on the

boundary so it would not satisfy this condition on the and cases. But, in the case you𝑙
1

𝑙
∞

𝑙
2

we can see that it definitely satisfies. So, this means, so this is what we mean by uniformly

bulging in all directions.

If you have two points on the boundary which are a certain distance apart then irrespective of

the position of the two points the midpoint must be uniformly away from the boundary at a

certain distance. So, so example

Example: So and that means with the or are not uniformly convex.𝑙
1
𝑁 𝑙

∞
𝑁  𝑅𝑁 ‖ · ‖

1
‖ · ‖

∞

In fact they are not even strictly convex which I introduced a little earlier.

Example: So, is uniformly convex. So, let us take this is the with then𝑙
2
𝑁 𝑥, 𝑦∈ 𝑙

2
𝑁 𝑅𝑁 ‖ · ‖

2

this straightforward calculation so . This is called‖ 𝑥+𝑦
2 ‖

2

2
+ ‖ 𝑥−𝑦

2 ‖
2

2
= 1

2 ‖𝑥‖
2
2 + ‖𝑦‖

2
2( )

the parallelogram identity or the Apollonius’s theorem from plane geometry. So, if you have

so this is and then this will be plus if you take the midpoint here then this will be ,𝑥 𝑦 𝑥 𝑥+𝑦
2

this will be in length and therefore this is the standard theorem in plane geometry known𝑥−𝑦
2

as Apollonius theorem or this is also called the parallelogram law. Because, you can complete

the parallelogram and say that half the diagonal square on half the diagonal is equal to one



half of the sum of the squares on the other two sides. So, that is this theorem so this is

straightforward checking you can do it.
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So, then if . Then from this identity it follows that‖𝑥‖
2
≤1,  ‖𝑦‖

2
≤1, ‖𝑥 − 𝑦‖

2
> ϵ

. And where is now given in a straightforward fashion by‖ 𝑥+𝑦
2 ‖

2

2
< 1 − ϵ2

4 = (1 − δ)2 δ

. So, once you have this, you have uniform convexity.1 − 1 − ϵ2

4

So, we can also show in fact for the same reason. In also you have the same identity so𝑙
2

𝑙
2

you can check it. So, is uniformly convex is uniformly convex if . So, if in𝑙
2

𝑙
𝑝

1 < 𝑝 < ∞

fact it is easy we will see this later if and then difficult if so we will 2 < 𝑝 < ∞ 1 < 𝑝 < 2 

see this in a when the time comes when we do spaces. So, you can see that these spaces are𝑙
𝑝

all uniformly convex. Now, the important theorem why are we concerned about uniformly

convex spaces, so theorem this is the major theorem here:

Theorem: uniformly convex Banach space. Then is reflexive. So, you see the geometry𝑉 𝑉

of the norm tells you when the space is reflexive.



Proof: So, canonical embedding and to show is onto. So, that is to show𝐽: 𝑉→𝑉⋆⋆ 𝐽

. Where according to our notation is the closed unit ball in , is the closed𝐽 𝐵( ) = 𝐵⋆⋆ 𝐵 𝑉 𝐵⋆⋆

unit ball in . Now, is an isometry so and so is closed so sufficient to show is𝑉⋆⋆ 𝐽 𝐽(𝐵) 𝐽(𝐵)

dense in . Then will be, is closed so , is . So .𝐵⋆⋆ 𝐽(𝐵) 𝐽(𝐵) 𝐽 𝐵( ) =  𝐽(𝐵) 𝐽(𝐵) 𝐵⋆⋆ 𝐽 𝐵( ) =  𝐵⋆⋆

So, this is what we want to show, we want to show that given any continuous linear

functional on the dual space namely a member of which is in you can always𝐵⋆⋆ 𝑉⋆⋆

approximate it by something from as much as close this.𝐽 𝐵( )

So, let and we assume that . Now, if you prove it for then so toϕ∈𝐵⋆⋆ ‖ϕ‖ = 1 ‖ϕ‖ = 1 

show for every there exists an such that . So, this is what, this isϵ > 0 𝑥∈𝐵 ‖ϕ − 𝐽
𝑥
‖ < ϵ

in of course.𝑉⋆⋆

This is what we want to show, so this is what we mean by dense. Now, I have said for

but then once you show it for then by scaling argument you can easily‖ϕ‖ = 1 ‖ϕ‖ = 1

show it for any other with . So, follows by elementary scaling arguments.ϕ ‖ϕ‖≤1 ‖ϕ‖ = 1

Namely, the theorem will be true for and then you have to do it from there you canϕ
‖ϕ‖

easily deduce it for any .ϕ
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So, now we are going to assume that. So, given, so let correspond to in the definition ofϵ δ ϵ

uniform convexity. So, you choose that particular . Now, choose such that soδ 𝑓∈ 𝑉⋆ ϕ 𝑓( ) ϕ

is a functional on , and therefore we can choose and𝑉⋆ ‖ϕ‖ = 1 ϕ 𝑓( ) > 1 −  δ
2 ‖𝑓‖

𝑉⋆ = 1

. So, because what is , it is a supremum of or if you like but then‖𝑓‖
𝑉⋆ = 1 ‖ϕ‖ ϕ 𝑓( ) ϕ 𝑓( )| |

, together give you . So, supremum of the over will beϕ 𝑓( ) ϕ − 𝑓( ) ϕ 𝑓( )| | ϕ 𝑓( ) ‖𝑓‖
𝑉⋆ = 1

equal to . So, you can always find an because that is bigger than .1 𝑓 1 −  δ
2

So, now you define . So, is a single point in the pre space𝑈 = ξ∈𝑉⋆⋆:  ξ − ϕ( )𝑓| | <  δ
2{ } 𝑓

so we are working on so this is is neighbourhood of in . So, open set and𝑉⋆⋆ 𝑈 𝑊⋆ ϕ 𝑉⋆⋆ 𝑊⋆

but what do you know about . in is equal to . This we have already𝐽 𝐵( ) 𝐽 𝐵( ) 𝐽 𝐵( ) 𝑊⋆ 𝐵⋆⋆

seen several and used in previous occasions also. Therefore, there exists an such that𝑥∈𝐵

. Because, every neighbourhood must intersect and therefore in the sense and𝐽
𝑥
∈𝑈 𝐽 𝐵( ) 𝑊⋆

therefore there exists an such that this holds.𝑥

So, if we are through. We said strictly less than but less than or equal to does‖𝐽
𝑥

− ϕ‖≤ϵ

not matter so we are through. So, so assume this is not true so . That means‖𝐽
𝑥

− ϕ‖ > ϵ

what that is . is a unit ball is the closed set of all vectors whose normϕ∉ 𝐽
𝑥

+ ϵ𝐵⋆⋆ 𝐵⋆⋆ ϵ𝐵⋆⋆

is less than or equal to . You are translating this ball by , does not belong to this meansϵ 𝐽
𝑥

ϕ

what must be bigger than strictly bigger than and that is the condition which we‖ϕ − 𝐽
𝑥
‖ ϵ

have put in here. So, this now is compact because of the Banach Alaoglu theorem.𝐵⋆⋆ 𝑊⋆

And therefore, it is by since the is Hausdorff implies is closed. So, is𝑊⋆ 𝐵⋆⋆ 𝑊⋆ 𝐽
𝑥

+ ϵ𝐵⋆⋆

just a translation of a closed set. So, this also closed. So, complement is open and𝑊⋆ 𝑊⋆ ϕ

belongs to this complement because we are assuming is not in that thing. Therefore thereϕ

exists a open neighbourhood of such that also is contained in .𝑊⋆ 𝑈
1

𝑉 𝑈
1

(𝐽
𝑥

+ ϵ𝐵⋆⋆ )
𝑐
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Then again is open and so by the density of in there exists such𝑈∩𝑈
1

𝑊⋆ 𝑊⋆ 𝐽(𝐵) 𝐵⋆⋆ 𝑥
1
∈𝐵

that . So, what do you mean by this? So, . Because, is𝐽 𝑥
1( )∈ 𝑈∩𝑈

1
ϕ 𝑓( ) − 𝑓(𝑥)| | <  δ

2 𝑓(𝑥)

nothing but . So, , and therefore you have .𝐽
𝑥
(𝑓) ϕ 𝑓( ) −  𝐽

𝑥
(𝑓) 𝐽

𝑥
∈𝑈 ϕ 𝑓( ) − 𝑓(𝑥)| | <  δ

2 𝐽
𝑥

1

is also in so .𝑈 ϕ 𝑓( ) − 𝑓(𝑥
1
)| | <  δ

2
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So, add these two from this you get that .2ϕ 𝑓( ) < δ + 𝑓(𝑥 + 𝑥
1
)| | < δ + ‖𝑥 + 𝑥

1
‖

Because, . So, you have this. Now, what is we have chosen it in such a way that is‖𝑓‖ ϕ(𝑓)

. Because, we have chosen in that fashion .2 − δ < δ +  ‖𝑥 + 𝑥
1
‖ ϕ(𝑓) ϕ 𝑓( ) > 1 −  δ

2

Therefore, . But, that we should we have not used that fact and‖
𝑥+𝑥

1

2 ‖ > 1 − δ 𝑥
1

∈ 𝑈
1
 

that implies that is . And we also know that‖𝐽
𝑥

− 𝐽
𝑥

1

‖ > ϵ ‖𝑥 − 𝑥
1 

‖ > ϵ ‖𝑥‖≤1,  ‖𝑥
1
‖≤1

because both of them are elements of . So, these two and uniform convexity implies that𝐵

and that is a contradiction. So, this is a contradiction.‖
𝑥+𝑥

1

2 ‖ < 1 − δ

And therefore we have we have that norm of has to be less than equal to and‖𝐽
𝑥

− ϕ‖ ϵ

therefore is dense in . That is which is closed so which is equal to𝐽(𝐵) 𝐵⋆⋆ 𝐽(𝐵) 𝐽(𝐵) = 𝐽 𝐵( )

.  So, is onto. So, is reflexive. So, this proves the theorem completely.𝐵⋆⋆ 𝐽 𝐵
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So, now let us that suppose converges to in norm then this implies that converges{𝑥
𝑛
} 𝑥 {𝑥

𝑛
}

to weakly this we have seen. And we have also seen that the converse is not true. We have𝑥



examples like that goes to weakly but, it cannot converge strongly. So,𝑒
𝑛{ } ∈ 𝑙

2
0 {𝑥

𝑛
}

converges to in norm implies by continuity of the norm .𝑥 ‖𝑥
𝑛
‖ → ‖𝑥‖

And obviously this converse is also not true you can have any set of vectors but‖𝑥
𝑛
‖ → ‖𝑥‖

that does not mean that should go to . But, if you combine these two relationships on{𝑥
𝑛
} 𝑥

the right hand side, if these two things happen, namely if you have weak convergence and the

convergence of the norm then it means convergence in the norm. So, provided you are in a

uniformly convex space. So, proposition

Proposition: So uniformly convex Banach space. And let and let . Then𝑉 𝑥
𝑛
⇀𝑥 ‖𝑥

𝑛
‖ → ‖𝑥‖

that is . Usually, this will be difficult to prove proving weak convergence𝑥
𝑛
→𝑥 ‖𝑥

𝑛
− 𝑥‖→0

is will be relatively easier because you have to show that for every linear𝑓(𝑥
𝑛
)→𝑓(𝑥)

function.

And also showing that the norm converges will also be relatively easier and together these

two in a uniformly convex Banach space tells you that you have norm convergence so this is

a very useful result.

Proof: So nothing to prove if because that is exactly saying now in𝑥 = 0 ‖𝑥
𝑛
‖→0 𝑥

𝑛
→0

norm. So, nothing to prove if . So, if so without loss of generality assume it𝑥 = 0 𝑥≠0 𝑥
𝑛
≠0 

is true for sufficiently large and therefore, we can assume this for all of them. So, now you𝑛

define and . Now, and . Together these two imply that𝑦
𝑛

=
𝑥

𝑛

‖𝑥
𝑛
‖ 𝑦 = 𝑥

‖𝑥‖ ‖𝑥
𝑛
‖ → ‖𝑥‖ 𝑥

𝑛
⇀𝑥

. This you can check so all you have to do is take any linear functional and you have to𝑦
𝑛
⇀𝑦

show that for every . This is what we have to show and that is easy to𝑓(𝑦
𝑛
)→𝑓(𝑦) 𝑦∈𝑉⋆

show because you are given these two things you can check it yourself.
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So, we have that and now we have to show that . So, therefore is𝑦
𝑛
⇀𝑦 𝑦

𝑛
→𝑦 𝑦

𝑛
⇀𝑦 1≤‖𝑦‖ 

less than or equal to lim inf. So, implies that . Because, , also𝑦
𝑛
⇀𝑦

𝑦
𝑛
+𝑦

2 ⇀𝑦 𝑦
𝑛
⇀𝑦

𝑦
𝑛
+𝑦

2

goes to weakly. Therefore, . Because, we know if something goes weakly𝑦 ‖𝑦‖≤ ‖
𝑦

𝑛
+𝑦

2 ‖ 

then the limit and for norm of the limit is less than the lim inf. Now, .‖
𝑦

𝑛
+𝑦

2 ‖ ≤   ‖
𝑦

𝑛
+𝑦

2 ‖  

But, and are all . And therefore, by the triangle inequality is always less‖𝑦
𝑛
‖ ‖𝑦‖ 1 ‖

𝑦
𝑛
+𝑦

2 ‖

than equal to and therefore . Therefore, we have that all equality is there1 ‖
𝑦

𝑛
+𝑦

2 ‖  ≤1

throughout and therefore you have that and . That means for‖𝑦
𝑛
‖ = ‖𝑦‖ = 1 ‖

𝑦
𝑛
+𝑦

2 ‖→1

any we have for all . But, this means that for allδ > 0 ‖
𝑦

𝑛
+𝑦

2 ‖ > 1 − δ 𝑛≥𝑁 ‖𝑦
𝑛

− 𝑦‖≤ϵ

. Because, if it was strictly bigger than that will contradict the uniform convexity. You𝑛≥𝑁 ϵ

have then you will have norm has to be less than‖𝑦
𝑛
‖ = ‖𝑦‖ = 1,  ‖𝑦

𝑛
− 𝑦‖ > ϵ ‖

𝑦
𝑛
+𝑦

2 ‖

and that is not true. So, corresponds to in the definition of uniform convex. Now,1 − δ δ ϵ

you take corresponding to in uniform convexity. Then for allδ ϵ ‖
𝑦

𝑛
+𝑦

2 ‖ > 1 − δ 𝑛≥𝑁

implies that that is and this implies that . And that completes your‖𝑦
𝑛

− 𝑦‖≤ϵ 𝑦
𝑛
→𝑦 𝑥

𝑛
→𝑥

proof of this theorem. So, we will next look at applications of these results to the calculus of

variations.




