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We will now look at applications of weak and weak star topologies in functional analysis. So,

we will start with Reflexive Spaces. So recall, is norm linear space then you have a𝑉

canonical embedding . So, for all . This is the canonical𝐽: 𝑉→𝑉⋆⋆ 〈𝐽
𝑥
, 𝑓〉 =  〈𝑓, 𝑥〉 𝑓∈𝑉⋆

embedding, this an isometry, so is isometry. And if onto, then we say is reflexive.𝐽 𝐽 𝑉



So, now we are going to characterise reflexive spaces using the weak topology. So notation,

Notation: So unit, closed unit ball in , , will be denoted by , , respectively.𝑉 𝑉⋆ 𝑉⋆⋆ 𝐵 𝐵⋆ 𝐵⋆⋆ 

So, the first theorem is a very nice and important theorem.

Theorem: So, Banach. reflexive if and only if is weakly compact.𝑉 𝑉 𝐵

That means, compact in the weak topology. So, you know that can never be non-compact𝐵

and if you are in then you know is compact but for reflexive spaces the unit ball,𝑉⋆ 𝐵⋆ 𝑊⋆

closed unit ball is compact and that characterises reflexive spaces.𝑊

Proof: So let us proof, first assume that is compact. So, is compact, then𝐵 𝑊 𝐵 𝑊 𝐽: 𝑉→ 𝑉⋆⋆

is an isometry. Therefore it is continuous, therefore we have seen that it is also continuous.𝑊

And therefore, is compact in , the continuous image of a compact set is compact,𝐽(𝐵) 𝑊 𝑉⋆⋆ 

that is all. So then, if it is compact in , then it will be compact in any smaller topology. So,𝑊

this implies is compact, is Hausdorff compact in a Hausdorff space are close, so𝐽(𝐵) 𝑊⋆ 𝑊⋆ 

is closed. Therefore, in , but we saw this result in the previous𝐽(𝐵) 𝑊⋆ 𝐽 𝐵( ) =  𝐽(𝐵) 𝑊⋆

session that is nothing but . So, , so is onto the unit ball to the unit ball𝐽(𝐵) 𝐵⋆⋆ 𝐽 𝐵( ) = 𝐵⋆⋆ 𝐽

and therefore, it is onto from, so this implies is onto. Because if it is onto on the unit ball it𝐽

will be onto on the entire space, so this implies reflexive.𝑉

So, now let us do the opposite thing. So, is reflexive, that means the and on𝑉 𝑊 𝑊⋆ 𝑉⋆ 

coincide. Therefore, by Banach-Alaoglu Theorem is compact, that is compact in𝐵⋆  𝑊⋆ 𝑊 𝑉⋆

, in . So, if is compact the previous, by previous arguments this shows that is𝑉⋆ 𝐵⋆ 𝑊 𝑉⋆ 

reflexive by the first part of this theorem. If this reflexive, then this implies that is𝑉⋆ 𝐵⋆⋆ 𝑊

compact because again in , the and coincide, therefore by the Banach-Alaoglu𝑉⋆⋆ 𝑊 𝑊⋆ 𝐵⋆⋆

is compact and therefore, it is compact also. And then, we have that𝑊⋆ 𝑊 𝐵 =  𝐽−1(𝐵⋆⋆)

because is reflexive and therefore, and are isometry, so they are continuous, therefore𝑉 𝐽 𝐽−1

continuous and consequently implies is compact. So, is continuous implies𝑊 𝐵 𝑊 𝐽 𝑊

continuous. So, , so this proves the theorem completely. So now, there are lots of nice𝐵

corollaries to this result.
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Corollary: So and Banach and isometric isomorphism, that means is an𝑉 𝑊 𝑇: 𝑉→𝑊 𝑇

isomorphism, and are continuous and it is a one-one onto map and is isometric and𝑇 𝑇−1 𝑇

therefore, it preserves the norms. Then, so if is reflexive, then is also reflexive.𝑉 𝑊

Proof: If you take the closed unit ball in and the closed unit ball in , then𝐵
𝑉

 𝑉 𝐵
𝑊

𝑊

. Now, reflexive implies is compact and is continuous and therefore, 𝑇 𝐵
𝑉( ) = 𝐵

𝑊
𝑉 𝐵

𝑉
𝑊 𝑇

it is weakly continuous, so is compact implies reflexive.𝐵
𝑊

𝑊 𝑊

Next corollary,

Corollary: reflexive Banach space and closed subspace, then is also reflexive.𝑉 𝑊 𝑊

Proof: So what is the weak topology on is nothing but the weak topology on restricted𝑊 𝑉

to . So check, we will do this in the exercises but it, I would recommend that you check it𝑊

yourself just a simple consequence of the Hahn-Banach theorem because every continuous

linear functional can be extended to the whole space. So, you can check the 𝑊

neighbourhoods are precisely the neighbourhood in . So, that is all that you have to𝑊 𝑉∩𝑊

show. And therefore, if you have, so we have what is the closed unit ball in this is𝐵 𝑊

nothing but the closed unit ball in . So, is closed and it is a subspace, so it is a closed 𝑉∩ 𝑊 𝑊



subspace implies weakly closed. And is weakly compact, so is also weakly compact𝐵
𝑉

𝐵
𝑊

implies reflexive.𝑊
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Next corollary,

Corollary: Banach. Then reflexive if and only if reflexive.𝑉 𝑉 𝑉⋆

Proof: So reflexive implies reflexive already done. Why? we have seen this namely if𝑉 𝑉⋆

you is reflexive then is weakly compact by the Banach-Alaoglu Theorem because the𝑉 𝐵⋆ 𝑊

and are the same. And therefore, if it is compact we already showed that is, the𝑊⋆ 𝑊 𝑉

space is reflexive therefore, is reflexive. So, reflexive implies reflexive, we have𝑉⋆ 𝑉 𝑉⋆

already shown. So, now let us assume reflexive. So, this implies that is reflexive by𝑉⋆ 𝑉⋆⋆ 

this argument and is a closed subspace. So, by the previous corollary we have𝐽 𝑉( )⊂ 𝑉⋆⋆ 𝐽 𝑉( )

is reflexive and this implies is reflexive, since is isometric, isomorphism. So that𝑉 𝐽: 𝑉→𝐽 𝑉( )

proves, so is reflexive if and only if is reflexive.𝑉 𝑉⋆

So, for instance we know that is not reflexive because is not but then, so is not𝑙
1

𝑙
∞
⋆ 𝑙

1
 𝑙

1
 

reflexive, so cannot be reflexive either. So next corollary,𝑙
∞



Corollary: reflexive and closed bounded and convex implies is compact. So, it𝑉 𝐾⊂𝑉 𝐾 𝑊

is not just the ball which is compact every closed bounded convex set is automatically𝑊 𝑊

compact.

Proof: So is bounded, so this implies that is contained in some times the unit ball .𝐾 𝐾 𝑚 𝐵

So, this is weakly compact because it is just scaling the unit ball and there since is𝑚𝐵 𝑉

reflexive. And is a closed convex set, so it is closed and therefore, a closed subset of a𝑉 𝑊

compact set is compact in the Hausdorff space therefore, is compact, so that proves that𝐾 𝑊

result.
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Proposition: Let be Banach and reflexive. Let , which is unbounded operator𝑉, 𝑊 𝑊 𝐴

defined in taking values in be closed and densely defined. Then, so is densely𝐷(𝐴) 𝑊

defined so the adjoint is defined, so then is also densely defined. So, we made this remark𝐴⋆

already need not be in general densely defined but is always closed.𝐴⋆ 𝐴⋆

So, is densely define you can define and is closed this is what we know but if is𝐴 𝐴⋆ 𝐴⋆ 𝐴

closed then densely defined than is densely defined and you know is closed, so is𝐴⋆ 𝐴⋆ 𝐴⋆

also closed and densely defined.



Proof: So what do you want to show. So, let we want to show that is dense, so weϕ 𝐷(𝐴⋆)

are going to use the Hahn-Banach theorem. Let such that on . To showϕ∈ 𝑊⋆⋆ ϕ = 0 𝐷(𝐴⋆)

everywhere in . So, something which vanishes on a set, vanishes everywhere andϕ = 0 𝑊⋆⋆

therefore, we want to show that it is. But is reflexive. So, this implies that there exists a𝑊

such that for all . This is the meaning of reflexive, so𝑦∈𝑊 〈ϕ, 𝑣〉
𝑊⋆⋆,𝑊⋆ =  〈𝑣, 𝑦〉

𝑊⋆,𝑊
𝑣∈ 𝑊⋆

that means every functional occurs as an evaluation. So, to show because is𝑦 = 0 ϕ

essentially determined by , so we want to show that . So, what is given, we are given𝑦 𝑦 = 0

that for all . So, if not, if , then . and if has〈𝑤, 𝑦〉 = 0 𝑤∈𝐷(𝐴⋆) 𝑦≠0 (0, 𝑦) ∉𝐺(𝐴) 0∈𝐷(𝐴) 𝑦

to be in graph of , has to be that is which is not true, so . So, , so𝐴 𝑦 𝐴(0) 0 (0, 𝑦) ∉𝐺(𝐴) 𝑦∈𝑊

it is not in . So therefore, by Hahn-Banach there exists and is closed,𝐺(𝐴) 𝑓, 𝑣( ) 𝐺(𝐴)

remember that, that is given to you because is a closed operator that means is closed.𝐴 𝐺(𝐴)

So, there exists , so this is closed and this is contained in , so the dual𝑓, 𝑣( )∈ 𝑉⋆ × 𝑊⋆ 𝑉×𝑊

space is which does not vanish on . So that means, such that . But𝑉⋆ × 𝑊⋆ (0, 𝑦) 〈𝑣, 𝑦〉≠0

for all . Then, what is this and this〈𝑓, 𝑢〉
𝑉⋆,𝑉

+ 〈𝑣, 𝐴𝑢〉
𝑊⋆,𝑊

= 0 𝑢∈𝐷(𝐴) 〈𝑣, 𝐴𝑢〉| | ≤ ‖𝑓‖‖𝑢‖

implies that and . But, if this implies has to be that is a𝑣∈𝐷(𝐴⋆) 𝑓 = 𝐴⋆𝑣 𝑣∈𝐷(𝐴⋆) 〈𝑣, 𝑦〉 0

given condition which is a contradiction, we are given the for all and〈𝑤, 𝑦〉 = 0 𝑤∈𝐷(𝐴⋆)

therefore, this is a contradiction. So, this proves this theorem. So, this is a contradiction so, 𝑦

has to be that means is dense.0 𝐷(𝐴⋆)
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So, now let us assume that and are both reflexive and is closed and𝑉 𝑊 𝐴: 𝐷 𝐴( )⊂𝑉→𝑊

densely defined. Then, we just saw that which is defined on going into .𝐴⋆ 𝐷(𝐴⋆)⊂ 𝑊⋆ 𝑉⋆

And this is defined because is densely defined, is also closed and densely defined this is𝐴 𝐴⋆

by the previous proposition.

So, is defined because is densely defined is defined. But𝐴⋆⋆ : 𝐷 𝐴⋆⋆ ( ) ⊂ 𝑉⋆⋆ → 𝑊⋆⋆ 𝐴⋆ 𝐴⋆⋆ 

we are going to take reflexive, so is can be identified with and can be identified𝑉 𝑉⋆⋆ 𝑉 𝑊⋆⋆ 

with . So, we consider . So, we can consider it like this and because we𝑊 𝐴⋆⋆ : 𝐷 𝐴⋆⋆ ( )⊂𝑉→𝑊



can identify being both all spaces being reflexive can be identified with and can𝑉⋆⋆  𝑉 𝑊⋆⋆ 

be identified with .𝑊

So, then the theorem is a nice important theorem.

Theorem: So, let and be reflexive Banach spaces and closed and𝑉 𝑊 𝐴: 𝐷 𝐴( )⊂𝑉→𝑊

densely defined. Then . So, these two mappings are the same. So, when you say two𝐴⋆⋆ = 𝐴

unbounded operators are the same, you have to show that the domains are the same and you

must also show that the action on each member of the domain is the same.

Proof: Need to show and for every we have to show𝐷(𝐴⋆⋆ ) = 𝐷(𝐴) 𝑢∈𝐷(𝐴) 𝐴⋆⋆ 𝑢 = 𝐴𝑢

that is enough to show . Because what is ? it is a domain all the first𝐺(𝐴⋆⋆ ) = 𝐺(𝐴) 𝐺(𝐴)

coordinates are in the domain and the second coordinate is the action and these two are the

same that means the mappings are one and the same.

So recall, you have , . And then, we saw that𝐼 :  𝑊⋆× 𝑉⋆ → 𝑉⋆ × 𝑊
⋆

𝐼 𝑣, 𝑓( ) = (− 𝑓, 𝑣)

this was already shown is nothing but . So, will be . So𝐼 𝐺 𝐴⋆( )( ) 𝐺(𝐴)⊥ 𝐺(𝐴)⊥⊥ 𝐼 𝐺 𝐴⋆( )( )
⊥

what does this mean?
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So, what is ? this is . So, this should consist of all elements ,𝐺(𝐴)⊥⊥ 𝐼 𝐺 𝐴⋆( )( )
⊥

𝑣, 𝑤( )∈𝑉×𝑊

which kill every element of . Now, what is looks like, so will be𝐼 𝐺 𝐴⋆( )( ) 𝐼 𝐺 𝐴⋆( )( ) 𝐼 𝐺 𝐴⋆( )( )
looking like . So, that is , so we want to kill all of{ − 𝐴⋆ϕ, ϕ( ): ϕ∈𝐷 𝐴⋆( )} 𝐼 𝐺 𝐴⋆( )( ) 𝑣, 𝑤( )

them. So, we want and this𝐼 𝐺 𝐴⋆( )( )
⊥

= { 𝑣, 𝑤( )∈𝑉×𝑊:  〈− 𝐴⋆ϕ, 𝑣〉
𝑉⋆,𝑉

+ 〈ϕ, 𝑤〉
𝑊⋆,𝑊

= 0}

should be true for all . Now, this relationship tells you thatϕ∈𝐷(𝐴⋆)

and therefore, this tells you that and . And〈− 𝐴⋆ϕ, 𝑣〉
𝑉⋆,𝑉

|||
||| ≤ ‖𝑤‖‖ϕ‖ 𝑣∈𝐷(𝐴⋆⋆) 𝐴⋆⋆𝑣 = 𝑤

therefore, so keeping that in mind is{ 𝑣, 𝑤( )∈𝑉×𝑊:  〈− 𝐴⋆ϕ, 𝑣〉
𝑉⋆,𝑉

+ 〈ϕ, 𝑤〉
𝑊⋆,𝑊

= 0}

nothing but, . And that is precisely therefore,{ 𝑣, 𝑤( )∈𝑉×𝑊: 𝐴⋆⋆𝑣 = 𝑤} 𝐺(𝐴⋆⋆)

, but you know double perp in the base space is nothing but the closure.𝐺(𝐴⋆⋆) =  𝐺(𝐴)⊥⊥

So, but is a closed operator and therefore, this equal to and that completes the𝐺(𝐴) 𝐴 𝐺(𝐴)

proof of the theorem.

So, that is, so, we will next look at separable spaces in the next session.


