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Our next example is the function space 𝐶[0,1]: = {𝑓: [0,1] ↦ ℝ| 𝑓 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠}. This 

becomes a vector space with the point wise addition and scalar multiplication, which are defined 

as (𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥); ∀ 𝑥 ∈ [0,1] and (𝛼𝑓)(𝑥) = 𝛼𝑓(𝑥); ∀ 𝑥 ∈ [0,1], 𝛼 ∈ ℝ. Now, 

every continuous function on a compact interval is bounded and attains its maxima and minima, 

and therefore we can define the following. 

||𝑓|| = max
x∈[0,1]

|𝑓(𝑥)| 

 It is a very simple exercise for you to check that this defines a norm, and therefore I will leave it 

to you to do it; even the triangle inequality is also very trivial (just as we did it in the 𝑙∞ case). 

We want to show that this defines a Banach space; so we take a Cauchy sequence (𝑓𝑛) in 𝐶[0,1]. 

Then, for every 𝜖 > 0, there exists 𝑁 such that for all 𝑛, 𝑚 ≥ 𝑁, we have 

                                |𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| < 𝜖, ∀ 𝑥 ∈ [0,1].  

Therefore, ∀ 𝑥 ∈ [0,1], (𝑓𝑛(𝑥)) is Cauchy (since the norm is defined by the maximum, this 

happens for every  𝑥) and therefore it converges. 

 So, let us define 𝑓(𝑥) = lim
𝑛→∞

𝑓𝑛(𝑥) i.e., we now have a function from [0,1] to ℝ; we have a 

candidate for the limit of the Cauchy sequence. And therefore we ask the usual question whether  

this candidate is eligible.  
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So, we want to know if 𝑓 ∈ 𝐶[0,1], and also, whether we have that ||𝑓𝑛 − 𝑓|| → 0 as 𝑛 → ∞. If 

we answer again these two questions affirmativly, then the Cauchy sequence will have a limit; 

and therefore the space will become a Banach space.  

First of all we have that |𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| < 𝜖, ∀𝑛, 𝑚 ≥ 𝑁, ∀ 𝑥 ∈ [0,1]. So, you fix 𝑛 and let 𝑚 

tend to infinity to have |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜖, ∀𝑛 ≥ 𝑁, ∀ 𝑥 ∈ [0,1]. So, we have that 𝑓𝑛 converges 

uniformly to 𝑓, and the convergence in this norm is essentially uniform convergence. So, if we 

prove that 𝑓 is continuous, then we are done. Now, we already know from real analysis that the 

uniform limit of continuous functions has to be continuous. I am just going to reprove that fact; 

Let us take any 𝑥0 ∈ [0,1]. Now, given any 𝜖 > 0, there exists a 𝛿 > 0 such that you have 

|𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| < 𝜖, ∀ |𝑥 − 𝑥0| < 𝛿. In particular, I am going to do it for 𝑛 = 𝑁; I am going to 

choose this 𝛿. So, now  

 |𝑓(𝑥) − 𝑓(𝑥0)| ≤ |𝑓(𝑥) − 𝑓𝑁(𝑥)| + |𝑓𝑁(𝑥) − 𝑓𝑁(𝑥0)| + |𝑓𝑁(𝑥0) − 𝑓(𝑥0)| < 3𝜖, ∀ |𝑥 − 𝑥0| <

𝛿.  Therefore, we have shown that 𝑓 is a continuous function; so, every Cauchy sequence 

converges and therefore 𝐶[0,1] is a Banach space. So, this is an example of a function space, we 

will see many more function spaces later; so we will leave it at this. 

So, before concluding, let me do one final example if you like. So, this is how to produce new 

Banach spaces from old (i.e., new normed linear spaces from old). This is standard in 

mathematics we do it all the time; whenever we have a structure, there are at least two different 

ways of producing new objects with the same structure. One is known as the subspace; if you 



have a group then you have a subgroup, if you have a topological space, you have a subspace, 

which inherits the same structure from above. 

So, same way if you have a normed linear space and you have any vector subspace of 𝑉; you put 

the same norm there, you get a subspace. The other structure is the quotient space. 
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We will give you the example or we will discuss quotient spaces. Ler 𝑉 be a normed linear space 

and 𝑉 be a closed subspace (this is important and we will see in a moment). Then we define the 

equivalence relation 𝑥~𝑦 ⟺ 𝑥 − 𝑦 ∈ 𝑊. This defines an equivalence relation and then it 

partitions 𝑉 into equivalence classes. The equivalence classes are are called the cosets and 

denoted by 𝑥 + 𝑊 ≔ {𝑥 + 𝑤: 𝑤 ∈ 𝑊. The set of all such cosets i.e., the collection of cosets, we 

call the quotient space 
𝑉

𝑊
. We can give this vector space structure namely, if you have two cosets 

𝑥 + 𝑊 and 𝑦 + 𝑊, then we can define the addition as (𝑥 + 𝑊) + (𝑦 + 𝑊) = (𝑥 + 𝑦) + 𝑊. x 

and the scalar multiplication as 𝛼(𝑥 + 𝑊) = 𝛼𝑥 + 𝑊. One can check that these are well defined, 

because if 𝑥~𝑥′, 𝑦~𝑦′; since W is a subspace, 𝑥 + 𝑦~𝑥′ + 𝑦′. Similarly, if 𝑥~𝑥′, then 𝛼𝑥~𝛼𝑥′; 

and therefore, these are well defined. So, the cosets can be defined, the operation does not 

depend on the representative you are taking for the coset, and therefore you can do it.  

Now we are going to define a norm on 
𝑉

𝑊
 . We define ||𝑥 + 𝑊|| 𝑉

𝑊

≔ inf  { ||𝑥 + 𝑤||: 𝑤 ∈ 𝑊}. 

(You take all elements of the coset, take their norms and take the minimum of that).  

Now have to check that this is a norm.  
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First of all, ||𝑥 + 𝑊|| 𝑉

𝑊

≥ 0, because you are taking the infimum of non-negative numbers and 

therefore it is non-negative. Let us see the second one. If 𝑥 + 𝑊 = 0 + 𝑊, then 𝑥, −𝑥 ∈ 𝑊 

(because 𝑊 is a subspace). Therefore, 0 ≤ ||𝑥 + 𝑊|| 𝑉

𝑊

≤ ||𝑥 + (−𝑥)|| = 0.  

So, if 𝑥 + 𝑊 is the zero element, then ||𝑥 + 𝑊|| 𝑉

𝑊

= 0. Conversely, let  ||𝑥 + 𝑊|| 𝑉

𝑊

= 0. Then 

we have to show that 𝑥 + 𝑊 = 0, or in other words 𝑥 ∈ 𝑊. What does the definition says? Since 

||𝑥 + 𝑊|| 𝑉

𝑊

= 0,  there exists 𝑤𝑛 ∈ 𝑊 such that ||𝑥 + 𝑤𝑛|| → 0 (by definition). This means 

that 𝑤𝑛 → − 𝑥. Now 𝑊 is closed. This implies that – 𝑥 ∈ 𝑊 (this is where the hypothesis closed 

is important) and this implies that 𝑥 ∈ 𝑊, and therefore we are true.  

Now, we want to show the the third property. Take 𝛼(𝑥 + 𝑊) for some 𝛼 ∈ 𝐹. If 𝛼 = 0, then 

there is nothing to do. So let us assume 𝛼 ≠ 0; and therefore, 𝜶(𝒙 + 𝑾) = 𝜶𝒙 + 𝑾 this can be 

written as alpha times x plus W again because, if you take alpha x plus w; this can be 

written as alpha times x plus alpha inverse of w, which is again an element of W. 

And therefore from this it immediately follows that the norm of alpha x plus W in V by W 

is nothing but mod alpha times norm of x plus W; V by W because every element here can 

be written as alpha times something and you are taking the infimum of the norms.  

Now we are going to show that triangle inequality; 

(Refer Slide Time: 15:32) 



 



 
So we have to look at ||𝑥 + 𝑦 + 𝑊|| 𝑉

𝑊

= inf  {||𝑥 + 𝑦 + 𝑤|| ∶ 𝑤 ∈ 𝑊} = inf  {||𝑥 + 𝑦 + 𝑤 +

𝑤′|| ∶  𝑤, 𝑤′ ∈ 𝑊} ≤ inf  { ||𝑥 + 𝑤|| + ||𝑦 + 𝑤′||: 𝑤, 𝑤′ ∈ 𝑊} ≤ inf  { ||𝑥 + 𝑤||} +

inf||𝑦 + 𝑤′||  ∶  𝑤, 𝑤′ ∈ 𝑊} = ||𝑥 + 𝑊|| 𝑉

𝑊

+ ||𝑦 + 𝑊|| 𝑉

𝑊

. Therefore we have shown that the 

triangle inequality is satisfied. 

So, 
𝑉

𝑊
 where W is a closed subspace makes a normed linear space. 

 If 𝑉 is complete so is 
𝑉

𝑊
. So, if the original space is Banach, then the quotient space also is 

Banach; so the quotient space inherits the Banach or completeness property. We shall rpove this. 

We have to show that every Cauchy sequence converges; so let us take a Cauchy sequence 

Cauchy sequence (𝑥𝑛 + 𝑊) in  
𝑉

𝑊
. Now, given any Cauchy sequence, you can always find a sub-

sequence, such that consecutive elements differ by whatever quantity you decide. 

So, there exists subsequence (𝑥𝑛𝑘
+ 𝑊), such that ||𝑥𝑛𝑘

+ 𝑊 − 𝑥𝑛𝑘+1 
+ 𝑊|| 𝑉

𝑊

<
1

2𝑘. This means 

there exists 𝑦𝑘 ∈ 𝑥𝑛𝑘
+ 𝑊 such that ||𝑦𝑘 − 𝑦𝑘+1|| <

1

2𝑘
.  This implies that (𝑦𝑘) is Cauchy 

(whenever, you have a sequence, where consecutive terms differed by something; and that 

something forms a summable series, then the original sequence is Cauchy). 

Since 𝑉 is complete, (𝑦𝑘) will converge to 𝑦. Now we have ||𝑥𝑛𝑘
+ 𝑊 − 𝑦 + 𝑊|| 𝑉

𝑊

≤

||𝑦𝑘 − 𝑦|| → 0. Therefore 𝑥𝑛𝑘
+ 𝑊 → 0. Therefore, we have produced a subsequence which is 

convergent. 



Again you have a Cauchy sequence property, if you have subsequence converges in a Cauchy 

sequence. Then the original sequence also converges to the same limit.  
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Therefore, so this implies that 𝑥𝑛 + 𝑊 → 𝑦 + 𝑊. We have used three properties of Cauchy 

sequences throughout this proof and you should check them all. First, in a Cauchy sequence you 

can find a subsequence whose consecutive terms differ by whatever quantity you decide. Now, if 

a sequence has consecutive terms differing by a general term of a convergence series; then the 

sequence is Cauchy. And thirdly, if you have a Cauchy sequence and you have a convergent 

subsequence; the sequence converges to the same limit. 

So, using these three, we have shown that if 𝑉 is complete, then 
𝑉

𝑊
 is also complete. And 

therefore the it becomes a Banach space; so with these examples we will wind up. And then we 

will next next topic for discussion will be continuous linear transformations. Thank you. 

 


