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We will now discuss the weak star topology. So, is a Banach space and is the dual space.𝑉 𝑉⋆ 

So, you already have the norm topology. is a Banach space we also have the weak𝑉⋆  𝑉* 

topology, what is the weak topology, smallest topology such that every element of is𝑉⋆⋆

continuous. So, this would be the weak topology on .𝑉⋆ 

Now, we are going to define the weak star topology.

Definition: The weak star topology on , so this is always defined only on the dual space, is the𝑉⋆ 

smallest topology, smallest in the sense of smallest number of open sets such that the functionals

are continuous.{𝐽
𝑥
 : 𝑥∈𝑉}

Recall is the canonical embedding from into . acting on any is nothing but acting𝐽 𝑉 𝑉⋆⋆ 𝐽
𝑥

𝑓 𝑓

on which in the old notation is , of course, this is for every , for every . So, this𝑥 𝑓(𝑥) 𝑓∈ 𝑉⋆ 𝑥∈𝑉

is the, so all elements of continuous, it is a weak topology, but we are only now asking𝑉⋆⋆ 𝑉⋆⋆



for a smaller number of functions, namely the functions of the form to be continuous and𝐽
𝑥

therefore, this gives you a smaller topology.

So, immediate remark,

Remark: reflexive means is onto, then there is nothing new. Weak and weak star topologies𝑉 𝐽

coincide on . So, this makes sense only in the non reflexive case. So, if is finite𝑉⋆ 𝑉

dimensional, then it is reflexive and we already know that weak and norm topologies are the

same. So, norm weak, weak star topologies coincide. So, that is nothing absolutely new in those

cases. So, so, if you have weak star, is the weak star topology, so is contained in the weak𝑊⋆

topology , is contained in the norm topology . is norm topology, is the weak topology,𝑊 𝑊 𝐽 𝐽 𝑊

and is the weak star topology. So,𝑊⋆

𝑊⋆⊂ 𝑊⊂ 𝐽

is the inclusion between them.
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And then, so first immediate proposition, any self respecting topological space better be

Hausdorff.



Proposition: is Hausdorff.𝑊⋆

Proof: So what should you do, you should find two open sets if so, let . So, what𝑊⋆ 𝑓
1

≠ 𝑓
2

does it mean, that means there exists a such that , this is what we mean when𝑥∈𝑉 𝑓
1
(𝑥)≠𝑓

2
(𝑥)

two of the linear functionals are not the same. So, let us take neighbourhood of , 𝑈
1

𝑓
1
(𝑥) 𝑈

2

neighbourhood of in or if you are dealing with complex spaces, then𝑓
2
(𝑥) 𝑅 𝐶 𝑈

1
∩ 𝑈

2
= ϕ

because the real line or complex plane is itself Hausdorff. So, you now you take

and are both open by a𝐽
𝑥
−1 𝑈

1( ) = {𝑓∈ 𝑉⋆ : 𝑓 𝑥( )∈ 𝑈
1
} 𝐽

𝑥
−1 𝑈

2( ) = {𝑓∈ 𝑉⋆ : 𝑓 𝑥( )∈ 𝑈
2
} 𝑊⋆ 

definition because it is something and disjoint. And you have and𝐽
𝑥
−1 𝑓

1
∈ 𝐽

𝑥
−1 𝑈

1( ) 𝑓
2

∈ 𝐽
𝑥
−1 𝑈

2( )
. So, you have neighbourhood, neighbourhoods of this. So, we can now also define how is𝑊⋆ 

the, how is a typical neighbourhood. So, typical neighbourhood of in . So, must be𝑓
0
∈ 𝑉⋆ 𝑊⋆ 𝑈

set of all such that, so just as we had weak neighbourhood was . So, you have𝑓∈ 𝑉⋆ 𝑓 − 𝑓
0

< ϵ

minus neighbourhood of . So, where a finite𝐽
𝑥

𝑓
0

𝑈 = {𝑓∈ 𝑉⋆ :  𝑓 − 𝑓
0( ) 𝑥

𝑖( )| | < ϵ,   ∀ 𝑖∈𝐼} 𝐼

indexing set and for all . So, you take a finite number of points. So, you take , ,𝑥
𝑖
∈𝑉 𝑖∈𝐼 𝐽

𝑥
1

𝐽
𝑥

2

𝐽
𝑥

𝑛

and inverse image of that should be less than . So, so which is shouldϵ 𝐽
𝑥

𝑖

(𝑓 −  𝑓
0
) 𝑓 − 𝑓

0( ) 𝑥
𝑖( )

be less than . So, this defines a neighborhood. So, then notation again,ϵ

Notation: So we say , this is norm convergence. Therefore, . Then this𝑓
𝑛
→𝑓 ‖𝑓

𝑛
− 𝑓‖→0 𝑓

𝑛
⇀𝑓

is called the usual weak convergence. What does this mean, for every .ϕ 𝑓
𝑛( )→ϕ(𝑓) ϕ ∈ 𝑉⋆⋆

And then we have , this is weak star convergence.𝑓
𝑛
  ⋆ → 𝑓
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So, we have the immediately following proposition: you can do it yourself because it is exactly

like we did the previous proposition. So, proposition

Proposition: Banach, sequence in .𝑉 {𝑓
𝑛
} 𝑉⋆ 

1. in if and only if for every . One way is obvious, return𝑓
𝑛
  ⋆ → 𝑓 𝑉⋆ 𝑓

𝑛
𝑥( )→𝑓(𝑥) 𝑥∈𝑉

you just look at the point based neighbourhood system and you will get this.



2. . Obviously, we have already seen , that means for all functionals it𝑓
𝑛
→𝑓 𝑓

𝑛
⇀𝑓

converges, in particular it converges for all axis and therefore, implies that𝑗 𝑓
𝑛
⇀𝑓

.𝑓
𝑛
  ⋆ → 𝑓

3. in and in , this implies .𝑓
𝑛
  ⋆ → 𝑓 𝑉⋆  𝑥

𝑛
→𝑥 𝑉 𝑓

𝑛
𝑥

𝑛( )→𝑓(𝑥)

Again, you take the difference, and then you, you just have to, you just take the difference and

add and subtract the usual term like we did last time and you will get it. Again, if you have it is

convergent in it has to be bounded because every , by the uniform𝑊⋆ 𝑓
𝑛

𝑥( )→𝑓(𝑥) 𝑥

boundedness principle . So, we have that automatically. So, we do not have anything‖𝑓
𝑛
‖≤𝐶

new. So now, proposition

Proposition: Let be linear functional on which is, let be a linear function which isϕ 𝑉⋆ ϕ 𝑊⋆ 

continuous, it means continuous with respect to the . Then, there exists such that𝑊⋆ 𝑥∈𝑉 ϕ =  𝐽
𝑥

.

So, these are precisely the functionals which will be continuous with respect to the , no other𝑊

linear functionals which can be continuous. So this is,

Proof: So let be the open unit ball in or depending on what is your base field. It does not𝐷
~

 𝑅 𝐶

matter we are going to (())(12:13) So, so is continuous implies there exists open setϕ 𝑊⋆ 𝑊⋆ 𝑈 

neighbourhood of because , so it comes to, it belongs to .0∈𝑉⋆ ϕ 0( ) = 0 𝐷
~

So, if you take it should be an open set, it should contain a neighbourhood of such thatϕ−1(𝐷
~

) 0

. Therefore, for every we have . Now what is going to look like? Itϕ 𝑈( ) ⊂ 𝐷
~

𝑓∈𝑈 ϕ(𝑓)| | < 1 𝑈

is a neighbourhood of the origin. So, So, in some finite𝑈 = { 𝑓∈𝑉⋆: 𝑓 𝑥
𝑖( )| | < ϵ,  ∀ 1≤𝑖≤𝑛}.

collection of points you have taken and this is a neighbourhood. So, assume such that𝑓∈𝑉⋆

, then this implies that because is strictly less than , so it belongs to .𝑓 𝑥( ) = 0 𝑓∈𝑈 𝑓 𝑥
𝑖( ) = 0 ϵ 𝑈

And then also for every , you have , because and that is also𝑘∈𝑁 𝑘𝑓∈𝑈 𝑘𝑓( ) 𝑥
𝑖( ) = 𝑘𝑓 𝑥

𝑖( )



belongs to . And this implies that or . And this implies, that𝑈 ϕ(𝑘𝑓)| | < 1 ϕ(𝑓)| | <  1
𝑘

. So, if we have shown that , that is . Andϕ 𝑓( ) = 0 𝑓 𝑥( ) = 0 ϕ 𝑓( ) = 0 ⋂
𝑖=1
𝑛 𝐾𝑒𝑟 𝐽

𝑥
𝑖

( ) ⊂  𝐾𝑒𝑟(ϕ)

if you remember, we have done this exercise already in the Hahn-Banach theorem Chapter. This

implies that . And that is exactly what we claim. So, the point isϕ =  
𝑖=1

𝑛

∑ α
𝑖
𝐽

𝑥
𝑖

=  𝐽
𝑖=1

𝑛

∑ α
𝑖
𝑥

𝑖

𝑥 𝑥

and that proves this proposition. So, the only functions which are continuous with respect
𝑖=1

𝑛

∑ α
𝑖
𝑥

𝑖

to the are the functions nothing else.𝑊⋆ 𝐽
𝑥
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So corollary,

Corollary: A closed hyperplane must be of the form and is a𝑊⋆ 𝐻 = {𝑓∈𝑉⋆: 𝑓(𝑥) = α} α

scalar.

So, we are going to prove it.

Proof: For simplicity, assume real Banach space. So, is closed hyperplane, is𝐻 𝑊⋆ 𝑊⋆

contained in which is contained in . So, implies closed hyperplane and implies there exists𝑊 𝐽 𝐽

a such that . Because we know these are the only closedϕ∈𝑉⋆⋆ 𝐻 = {𝑓∈𝑉⋆: ϕ(𝑓) = α}

hyperplanes which in, in the . So, is some real number. So, now let us assume which𝐽 α 𝑓
0

∈ 𝐻𝑐

is now open. So, there exists, so, so there exists a neighborhood such that and that is𝑊⋆ 𝑈 𝑓
0
∈𝑈

completely contained in . So, what does look like, is going to look like set of all𝐻𝑐 𝑈 𝑈 𝑓∈𝑉⋆

such that and , and is positive. So, is convex and therefore,(𝑓 − 𝑓
0
) 𝑥

𝑖( )| | < ϵ,  1≤𝑖≤𝑛 𝑥
𝑖
∈𝑉 ϵ 𝑈

if you remember a proposition where we studied when doing the Hahn-Banach theorem. In fact,

there I remarked that everything was dependent on the ball being convex and we would prove the

same theorems of Hahn-Banach if you had locally convex spaces, namely spaces with convex

neighborhoods and that is exactly what we are having here. And therefore, is convex.𝑈



Therefore, for every you have or . So, one of these two only will𝑓∈𝑈 ϕ 𝑓( ) < α ϕ 𝑓( ) > α

happen, always only one of them. So, for every , . So, let us assume. So, without𝑓∈𝑈 ϕ 𝑓( ) > α

loss of generality for every, . Now, let us look at , thisϕ 𝑓( ) < α 𝑓∈𝑈 𝑊 = { 𝑔∈𝑉⋆: 𝑔 𝑥
𝑖( )| | < ϵ}

is the neighbourhood of the origin .𝑔 𝑥
𝑖( )| | < ϵ

So, this is a neighbourhood of the origin. Now, then what is , . So, this𝑊⋆ 𝑈 𝑈 = {𝑔 + 𝑓
0
: 𝑔∈𝑊}

is exactly you put then is that is less than . So, every can be written𝑓 + 𝑓
0

𝑔 + 𝑓
0

−  𝑓
0

𝑔 ϵ 𝑈

as, every element of is nothing but . So, you get therefore that if for every you𝑈 𝑔 + 𝑓
0

𝑔∈𝑊

have that belongs to , is in , so . Therefore,ϕ 𝑔( ) + ϕ 𝑓
0( ) 𝑈 𝑔 + 𝑓

0
𝑈 ϕ 𝑔( ) + ϕ 𝑓

0( ) < α

. But then is symmetric namely implies and therefore, ifϕ 𝑔( ) < α − ϕ 𝑓
0( ) 𝑔 𝑔∈𝑊 − 𝑔∈𝑊

you apply the same thing we get .ϕ 𝑔( )| | < α − ϕ 𝑓
0( )
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Now, we can given any or if you like, maybe I used somewhere. So, given any weϵ η ϵ η > 0

can always find such that . Of course, you can choose because you draw𝑓
0

∈ 𝐻𝑐 α − ϕ 𝑓
0( ) < η

take a point in and then you take any point and then you take everything is𝐻 𝑓 𝐻

. Take a which is which is strictly less than , draw a line between𝑓 𝑥( ),  ϕ(𝑓) = α 𝑓
0

ϕ 𝑓
0( ) α

these two and then as you move along the line by the intermediate value theorem you can get any

number which is less than . So, this is possible.η

And therefore, you have that, that there exists neighborhood of such that for𝑊⋆ 𝑊 0 ϕ(𝑔)| | < η

all . This implies is continuous at and by linearity is continuous everywhere, this is𝑔∈𝑊 ϕ 0 ϕ

in . So, is a continuous linear functional in the and by the previous proposition𝑊⋆ ϕ 𝑊⋆ ϕ = 𝐽
𝑥

that is . So, that proves the theorem completely.𝐻 = {𝑓: 𝑓 𝑥( ) = α}

So, we are in a finite dimensional space we already observed that all the topologies coincide ,𝐽 𝑊

, and . In infinite dimensional spaces we saw the is strictly less than the smaller than the .𝑊⋆ 𝑊 𝐽

And if the space is reflexive, of course and coincide. So, now if you take non reflexive,𝑊 𝑊⋆ 𝑉

let .ϕ∈ 𝑉⋆⋆∖𝐽(𝑉)

Then you look at the hyperplane . So, this is we know closed because any closed𝐻 = [ϕ = α] 𝐽

hyperplane is precisely of this form if you take . And this is convex. And therefore, thisϕ∈ 𝑉⋆⋆



implies this is closed. We proved it yesterday if you have a closed convex set it is𝑊 𝐽

automatically closed. But is not closed because it is not of the form is not of the form𝑊 𝐻 𝑊⋆ ϕ

.𝐽
𝑥

Therefore, it is not closed that is what we have just proved now. So, if you have a non𝑊⋆

reflexive space the weak so, we non reflexive, that means automatically implies infinite𝑉

dimensional then you have is strictly contained in which is strictly contained in or the𝑊⋆ 𝑊 𝐽

strong topology. So, you have these things.
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So, now you must be asking this question, what is this madness of weakening our topologies. We

had a perfectly good norm topology on all our spaces, which is matrix pay topology and

therefore, very easy to work with. Then we threw away some sets and produced a weak topology.

And now, we come to a dual space. We throw away some more open sets and then have, so we

are impoverishing our topologies continuously, repeatedly.

What is the purpose of this if you noticed the weak, open sets are pretty big. Yesterday we𝑊

saw that bounded open set cannot be open, because it contains full defined subspaces in it.𝐷 𝑊

So, the open sets are big. And so, as we weaken the topologies the open sets get bigger and𝑊

are fewer in number. So, this means chances of a set being compact improve. So, what is



compactness, every open cover has a finite subcover. So, you have fewer open sets. So already

the open sets, open covers come down and then the open sets get bigger.

So, hopefully the finite number of them will be covered. So, the chances of this. And in fact, if 𝑉

is finite dimensional again and then closed unit ball in is in fact compact, it is compact𝐵 𝑉⋆ 𝑊⋆

in the . It is not compact in the we know, it is not compact in the either if the topologies𝑊⋆ 𝐽 𝑊

are different, but if the, if it is compact in the .𝑊⋆

So, you see by impoverishing our topologies we increase the chances of getting compact sets.

And compact sets means convergence, if you have sequences, nets and so on you will have

convergent subsequences and so on. And therefore, that is important. So, this is a very landmark,

big landmark theorem in the weak topology chapter, which we will next prove.


