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We will now do some exercises. First



Problem 1: Let be the collection of all polynomials in 1 variable with real coefficients. Show𝑃

that is not complete for any norm. So, whatever norm you may put on you cannot make it𝑃 𝑃

into a complete normed linear space.

Solution: Let be a norm linear space and a proper subspace, proper subspace. Then does𝑉 𝑊 𝑊

not contain any ball of . So, let if possible, if not let be contained in . Because if it𝑉 𝐵
𝑉

(0, 𝑟) 𝑊

contains any ball you can translate it and therefore you can always have a ball centered at the

origin. Then let . So, then you take which is contained in which𝑥∈𝑉 𝑟
2

𝑥
‖𝑥‖ ∈ 𝐵

𝑉
(0, 𝑟) 𝑊

implies that and this implies that , this will imply that which is a𝑟
2

𝑥
‖𝑥‖ ∈𝑊 𝑥∈𝑊 𝑉⊂𝑊

contradiction.

So, given any ball you do not have any proper subspace it cannot contain a ball. Thus, any close

subspace, closed proper subspace of is nowhere dense. Now, where is the𝑉 𝑃 =  ⋃
𝑛=0
∞ 𝑊

𝑛
𝑊

𝑛

span of that is it is a collection of all polynomials of degree less than or equal{1, 𝑥,  𝑥2, ⋅,  ⋅,  ⋅, 𝑥𝑛}

to . So, then is finite dimensional implies closed and proper subspace of . And therefore,𝑛 𝑊
𝑛

𝑃

by the Bair category theorem, is the countable union of nowhere dense sets. So, this implies𝑃

nowhere dense. Therefore, is not complete.𝑊
𝑛

𝑃

So, this can be extended to any vector space, which has a countable basis, a basis means and set

up in linearly independent elements. So, set every member of can be written as a finite linear𝑋

combination from this set. So, if you have a countable basis, then such a space by Bair category

theorem can never be made into a complete space.
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Two, it is a very nice exercise.

Problem 2: Let be a sequence of real numbers such that is convergent whenever{𝑎
𝑛
}

𝑛=1

∞

∑ 𝑎
𝑛
𝑥

𝑛

is a sequence converging to 0. Show that is absolutely convergent.{𝑥
𝑛
}

𝑛=1

∞

∑ 𝑎
𝑛
 

So, you take an and you multiply it pointwise, component wise with the sequence which

converges to 0 and that new series, the series which you just get is always supposed to be

convergent. And therefore, you want to show now that an is absolutely convergent, so solution.

Solution: So, converging to 0 means what, is space and you know that . So, for𝐶
0

𝐶
0
⋆ = 𝑙

1
 𝑥∈𝐶

0

define . Then of course, is well defined; it is only a finite sum. And now youϕ
𝑛

𝑥( ) =
𝑖=1

𝑛

∑ 𝑎
𝑖
𝑥

𝑖
ϕ

𝑛

have . So, this implies that and you have . Now, ifϕ
𝑛

𝑥( )| | ≤ ‖𝑥‖
∞

𝑖=1

𝑛

∑ 𝑎
𝑖| | ϕ

𝑛
∈ 𝐶

0
⋆ ‖ϕ

𝑛
‖≤ 

𝑖=1

𝑛

∑ 𝑎
𝑖| |

you take , this belongs to and𝑥 = (𝑠𝑔𝑛 (𝑎
1
),  𝑠𝑔𝑛 (𝑎

2
),  ⋅,  ⋅,  ⋅,  𝑠𝑔𝑛 (𝑎

𝑛
),  0, 0, ⋅, ⋅, ⋅) 𝐶

0
ϕ

𝑛
𝑥( )

will be in fact . And then and therefore, this implies that .
𝑖=1

𝑛

∑ 𝑎
𝑖| | ‖𝑥‖

∞
= 1 ‖ϕ

𝑛
‖ =  

𝑖=1

𝑛

∑ 𝑎
𝑖| |



Now, by hypothesis, is convergent for every x in , because that is what it says,{ϕ
𝑛

𝑥( )} 𝐶
0

𝑖=1

𝑛

∑ 𝑎
𝑖
𝑥

𝑖

these are the partial sums of . So, and therefore, these converge, that is the
𝑛=1

∞

∑ 𝑎
𝑛
𝑥

𝑛
ϕ

𝑛

hypothesis. And therefore by Banach Steinhaus, for all , this implies , this‖ϕ
𝑛
‖≤𝐶 𝑛

𝑖=1

𝑛

∑ 𝑎
𝑖| |≤𝐶

implies that and therefore is absolutely convergent.
𝑖=1

∞

∑ 𝑎
𝑖| |≤𝐶 {𝑎

𝑖
}
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Three, before that, so try this as an exercise.

Exercise: Let , real sequence such that for all , is convergent.1 < 𝑝 < ∞ {𝑎
𝑛
} 𝑥∈𝑙

𝑝
𝑛=1

∞

∑ 𝑎
𝑛
𝑥

𝑛

Show that where of course, is the conjugate exponent, same proof you can𝑎 = 𝑎
𝑛
∈ 𝑙

𝑝⋆ 𝑝⋆ 

imitate.

So third, so this is application of function analysis to numerical integration.

Problem 3: (Numerical Integration) (a) Let and let be real numbers and let𝑛∈𝑁 {𝑤
𝑚
𝑛 }

𝑚=0

𝑃
𝑛

be a collection of points in . Let . Define . So,{𝑡
𝑚
𝑛 }

𝑚=0

𝑃
𝑛 [0, 1] 𝑓∈𝐶([0, 1]) ϕ

𝑛
𝑓( ) =  

𝑚=0

𝑃
𝑛

∑ 𝑤
𝑚
𝑛 𝑓(𝑡

𝑚
𝑛 )

you are evaluating the function at some points multiplying it by some weights and adding it.

Show that is a continuous linear functional andϕ
𝑛

‖ϕ
𝑛
‖ =  

𝑚=0

𝑃
𝑛

∑ 𝑤
𝑚
𝑛|||

|||.

Solution: So, . So, this is a trivial implies is a continuous linearϕ
𝑛

𝑓( )| | ≤ ‖𝑓‖
∞

𝑚=0

𝑃
𝑛

∑ 𝑤
𝑚
𝑛|||

||| ϕ
𝑛

functional. And now define piecewise linear such that .𝑓 𝑓 𝑡
𝑚
𝑛( ) = 𝑠𝑔𝑛(𝑤

𝑚
𝑛 )
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So, you have here, so you have the points, various points. So, , so this is , and so[0, 1] 𝑡
𝑚
𝑛 𝑡

1
𝑛 𝑡

𝑚
𝑛  

on. So, you have these points. So, at each point you are taking the sign, so the function has takes

the value or . So, you have , let us say here, here, here, here,+ 1 − 1 + 1 − 1 − 1 + 1 + 1

here, and so on. So, you have the function which is piecewise linear like this.− 1

So, this is the function . So, you fix the values at these points and in between you just join them𝑓

by means of straight line segments. Then what is ? Is precisely andϕ
𝑛

𝑓( )
𝑚=0

𝑃
𝑛

∑ 𝑤
𝑚
𝑛|||

||| ‖𝑓‖ = 1

because it takes a maximum value or or maximum, minimum values. And therefore,+ 1 − 1

this implies that .‖ϕ
𝑛
‖ =  

𝑚=0

𝑃
𝑛

∑ 𝑤
𝑚
𝑛|||

|||

(b) So now define Then is also continuous linear functional, in fact is,ϕ 𝑓( ) =
0

1

∫ 𝑓 𝑡( ) 𝑑𝑡. ϕ ‖ϕ‖

is equal to in fact again because and therefore, and in fact you can1 ϕ(𝑓)| | ≤ ‖𝑓‖
∞

‖ϕ‖≤1

show very easily that . So, show that for every if and only‖ϕ‖ = 1 ϕ
𝑛

𝑓( )→ϕ(𝑓) 𝑓∈𝐶([0, 1])

if,

(i) for all and where . ϕ
𝑛

𝑓
𝑗( )→ϕ(𝑓

𝑗
) 𝑗 = 0, 1, 2, ⋅,  ⋅,  ⋅, 𝑓

𝑗
= 𝑡𝑗



(ii) they are all bounded.sup 𝑠𝑢𝑝 
𝑚=0

𝑃
𝑛

∑ 𝑤
𝑚
𝑛|||

|||( ) < ∞

So, as I said so, this is nothing but numerical integration because you are replacing whichϕ(𝑓)

is the integral off by means of a sum which is like . So, that is by integration formula andϕ
𝑛

𝑓( )

therefore, this gives you the numerical integration. So, this is what you do with numerical

answers.

And now we are giving a necessary and sufficient condition for the numerical integration scheme

to converge. So solution,

Solution: So let us assume this way. So, for all so implies for allϕ
𝑛

𝑓( )→ϕ(𝑓) 𝑓 ϕ
𝑛

𝑓
𝑗( )→ϕ(𝑓

𝑗
) 𝑗

, that is trivial. And then since converges to so this implies that and that is ϕ
𝑛

𝑓( ) ϕ(𝑓) ‖ϕ
𝑛
‖≤𝐶

exactly by Banach Steinhaus and therefore, that is exactly implies to. So, that is the second

condition.
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Now, conversely let us assume, so conversely assume (i) and (ii). So choose, so let be positive.ϵ

A polynomial such that , so let . So, this is you can do by𝑃 ‖𝑓 − 𝑃‖
∞

< ϵ 𝑓∈𝐶([0, 1])

Weierstrass, you can always find a polynomial which is this. Now by (i), since ϕ
𝑛

𝑓
𝑗( )→ϕ 𝑓

𝑗( )
that is for every , it means, by linearity we have that . So, choose such that for𝑡𝑗 𝑗 ϕ

𝑛
𝑃( )→ϕ 𝑃( ) 𝑁

all , .𝑛≥𝑁 ϕ
𝑛

𝑓( ) − ϕ 𝑓( )| | < ϵ

Now, what does (ii) imply we have that . So,‖ϕ
𝑛
‖≤𝐶

.ϕ
𝑛

𝑓( ) − ϕ 𝑓( )| | ≤ ϕ
𝑛

𝑓( ) − ϕ
𝑛

𝑃( )| | + ϕ
𝑛

𝑃( ) − ϕ 𝑃( )| | + ϕ 𝑃( ) − ϕ 𝑓( )| |

Now, . The second one, so if ,ϕ
𝑛

𝑓( ) − ϕ
𝑛

𝑃( )| |≤ ‖ϕ
𝑛
‖‖𝑓 − 𝑃‖

∞
𝑛≥𝑁 ϕ

𝑛
𝑃( ) − ϕ 𝑃( )| | < ϵ

and the third one is . But , so‖ϕ‖‖𝑓 − 𝑃‖
∞

‖𝑓 − 𝑃‖
∞

≤𝐶

,ϕ
𝑛

𝑓( ) − ϕ
𝑛

𝑃( )| | + ϕ
𝑛

𝑃( ) − ϕ 𝑃( )| | + ϕ 𝑃( ) − ϕ 𝑓( )| |≤ 𝐶 + 1 + ‖ϕ‖( )ϵ

and therefore, it goes to and consequently you have shown that that is for all0 ϕ
𝑛

𝑓( ) → ϕ 𝑓( )

. So, this tells you, gives you a necessary and sufficient condition for the𝑓∈𝐶 0, 1[ ]( )

convergence of a numerical integration scheme and this comes from the Banach’s Steinhaus

theorem.




