Functional Analysis
Professor S Kesavan
Department of Mathematics
The Institute of Mathematical Sciences
Lecture No. 23
Orthogonality relations

We will now investigate relationship between the range and kernel of an operator and it is

adjoint. So, we have the following proposition.
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Proposition: So, let V, W Banach, A from D(A) contained in V taking values in W, densely
defined, linear operator. So, we set G = G(A) the graph of 4, this is a subspace of VX W and

H = Vx{0} again contained in VX W, these are subspaces. Then
1. N(4A) x {0} = GNH;
2. VXR(A)= G + H;
3. {0}xN(4")= G'nH ;and
4. RAYXW =G + H.
This is almost an immediate thing, so proof.
Proof: So, let us first consider GNH. So, H has a second coordinate {0}, so GNH will be
something cross {0} that is clear. Now, what is in G, the first coordinate is the domain of A

and the second coordinate if it has to be {0} then this has to be the null space of A. So, that is

why we get that. So, now secondly for G + H, so, if you take G + H, so, the second



coordinate has {0} in H and so, if you add anything you will only get the second coordinate
of G(A) and that is in the range of A, so you will get so G + H will be something cross range
of A, and the first coordinate in H is V, so whatever you add to it you only get VV so you will

get VXR(A). So similarly you do the other two yourself, only you use the fact

I (G (A*)) =G (A)L you must remember this relationship and in the same way you can do 3
and 4. So, that is this proposition.

So while we are here, let me note down some of the old results which we did which we will

be using. So if ¢ and H closed subspaces of a Banach space V, Then you have

1
GNH = (Gl + Hl) and G NH = G + H)l, these we did when we were in the

annihilator section and then you have from these two if you take the perp again,

EE—— 1
(Gn H)L:) (Gl + Hl) and (Gln Hl) = G + H . And then we also had a theorem which

says that the following are equivalent. The following are equivalent, you have that

(i) G + H is closed,

(i) G + H'isclosed and then
(i) G + H=(G'n Hl)l and
(V)G + H = (GnH)".

This is another theory we treat. So, let us just keep that in mind, so that.
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So, now we have corollary to the previous proposition,

Corollary: So, V, W Banach and A from D(A) contained in V taking values in W, densely

defined and closed. So, we are adding another hypothesis then

1 e 1

N(4)=R(A") ., N(A")= R(4)", N(A) 2 R(A"), and N(4") = R(A).

1 1

So, the first last two relationships if you take N (A)l that will be (R (A*) ) thatis in a dual

- oL 1
space, so, that should contain the R(A ) Then N (A ) is (R(A)l) and this is in the basic

space and therefore, it will be R(A). So, these two conditions follow from the first two and

therefore, we would need not to. So, we only have to prove the first one. So

Proof: So as usual, let us take G = G(A) contained in VXW and H = Vx{0} as before

contained in VXW. So, then we already saw, what was one of the relationships we saw?

1 1
We saw that, GNH = (Gl + HL) that relationship here. So, we have GNH = (GL + Hl) .
Now, what is GNH? GNH is N(A) X {0} and therefore, we have here

L * * *
N(A) x {0} = (Gl + Hl) .G+ H s R(A ) X W . So, if you take the perp the W it

Nt
will give you {0} and here you have R (A ) . And then if you just compare this you get the

first relationship namely N(4) = R(A*)l. Similarly, you have GnH = (G + H)l. So,
G'NH =(G+ H). So, what is G NH ? That is {(0}x N(4") = (G + H), G + H is
VXR(A). So, the perp of it will be {0}x R(A)L and therefore, you have N (A*) = R(A)l that
proves the second part of the perps. So, we have a relationship where the null space of an
operator is nothing but the annihilator of the range of the adjoint. Similarly, the null space of

that joint is nothing but the annihilator of the range of the original operator. So, this is a

connection between now we have a little more.
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So,

Theorem: V, W Banach and A from D(A) contained in V taking values in W which is closed
and densely defined. So, the previous corollary is true. So, in particular then the following are
equivalent:

1. R(A) is closed.

2. R(A*) is closed.

So, this R(A) is closed to in . R(A*) is closed in V" and then

« 1
3. R(A)= N(4") and
4. R(A")= N(A)".
So, now, if you look at the G and H definitions, which we have given before G = G(A),

H = V'x{0} and then we had various relationships between the two in this particular

corollary.

So, if you go back and check all this then this statement R(A) closed is the same as saying
G + H is closed in VXW because, what is G + H? VXR(A). So, if this is closed then the
product is closed and therefore, you have that. So, in the same way R(A*) is closed will be

saying the G '+ H'is closed in V' x W" and then the third one is saying that

J.J' 1

G+ H=(G +H) and the fourth one is saying G- + H = (GnH)".

But, this theorem, we have already shown. The following are equivalent. So, we have these
four statements here and that is exactly what we had. So, that completes the proof, there's no

need to prove it again. Now,

Remark: Of course, all these theorems are naturally true for continuous linear operators

because they are automatically closed, densely defined because they are defined everywhere.
In particular, so if you take, so, remark again,
Remark: Suppose V, W finite dimensional, then all operators are continuous linear operators

N
even all subspaces are closed and this is so we have that R(A) = N (A ) this is called the

usual Fredholm alternative and for instance, if you want to solve the equation A(x) = b



where A is a matrix say mXn matrix, so, when will this have a solution? So, let us assume
that A*y = 0. Then if you take the inner product (y, b), this is (y, Ax) by definition this is
(A*y, x), here the duality bracket is the same as the inner product in finite dimensional spaces
and then this is 0. So, if bER(A) this implies that b€ N (A*)l. And then by a dimension

argument you can show this in fact, it is it works both ways and therefore, you have this

Fredholm alternative.

So, the annihilator of the kernel of the adjoint is precisely the range. So, this is in fact the
compatibility condition that b must satisfy in order that this equation has a solution. So, this

equation has a solution if b is in the range of A and for that it needs to satisfy some condition

and it is precisely saying that (y, b) = 0 for every A*y = 0. So, that is and that result is

called the Fredholm alternative.
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Finally, we have a theorem on surjective maps. So, theorem, this is a very nice theorem So,

we say that

Theorem: V, W Banach and A: D(A)cV—W is closed and densely defined. The following

are equivalent.

1. Ais onto. So, there is a map, it is surjective. So, that means R(4A) = W.

2. there exists a constant C > 0 such that for all vED(A*) we have

*
||v||W*SC |A v| o

So, such a map is called bounded below. A star is bounded below that means, you

have a constant going in the opposite of the usual thing you have norm A bounded



means, ||A v||<C||v||, but here having ||A v||=C||v|| and that is called bounded

below.

3. You have that N(A") = {0} and R(4") is closed.

So, these are characterizations of a surjective map. So, once you have a surjective map that
means, you can solve the equations. That is the important thing, why we are interested in

such things. So, proof,

Proof: Let us prove that 1 = 3. So, A is onto, so R(A) is W and hence closed. So, we can

apply the previous theorem because we have closed bounded operators So, R(A) is closed, so
you have so many things. So, R(A*) will be N (A)l. And in fact, R(A*) will be closed. So,
R(A) is closed implies R(A*) is closed and you also have N (A*) is R(A)l. And since R(A) is
whole of W all that we have proved even much before N (A*) is R(A)l and therefore, and
since R(A) is whole of W, R(A)L has to be {0}. So, this proves 3. R(A*) is closed and this.

So let us say 3 = 1. That means N(A*) is {0} and R(A*) closed. So, then you have
* 1 * L
R(A)= N (A ) by the previous theorem, R(A) = N (A ) , that is number 3 and therefore

*. * L
N(A) = {0} and therefore N (A ) has to be W. So implies A onto. So, we approved that.

So, thus 1 is equivalent to 3. So, now we want to show the 2 and 3 are also equivalent.
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2 = 3. So, the condition that ||A*v||2C||v|| for all vED(A*). So, if Av=0 automatically
this means so A'v = 0=v = 0. So, this implies that N (A*) = {0}. And then let us take a

sequence {vn} in D(A*) such that A*vn—> f in V*, then again by the boundedness below we
have ||vn - vm|| < (C||A v o= A v l|. {A vn} is Cauchy. So, implies {vn} is Cauchy. We are
in the Banach space. So, v v, A*vn—> f and therefore, Al s closed, this is always true and
therefore, this implies that vED(A*) and A*(v) = f. Therefore, if {A*vn} goes to some f,

f = A*(v), so, this implies f€ D(A*), that is R(A*) is closed. So, then finally, this proves 3

completely.



So, now we want to show 3 = 2. So, we go back to the notation which we had earlier about
G and H, G = G(A) , H = Vx{0} and then we, we have N(A*) = {0} implies that
GNnH = {0}. So, because what is G'NH we computed it somewhere. G N H" number 3
is {0}x N(A*). If N(A*) = {0} then G'NH is in fact {0}, so we have. So then and you also
have that R(A*) closed implies G'+ H is closed again. What is G + H&
G'+ H = R(A*) x W So, if number 4 and therefore, if R(A*) is closed you have the
G + H'is closed. So, we are in the situation where the sum of two close subspaces is

closed and the intersection is {0}. So, this is in fact a direct sum. So, then by a proposition

which we proved by the open mapping theorem there exists a C > 0 such that if you have
ZEG  + H' thenz = a + b, a€G, b€ H" and ||a||<C]|z||, |[b||<C]z|| and you have two

: . L1 . . :
subspaces you have this, but now, since G N H = {0} in fact a and b are unique, there is
no choice of decomposition, there is only one decomposition available. So, if we find it that

is the correct one and it will automatically satisfy the condition.
(Refer Slide Time: 26:41)
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So, let us take vED(A*) then you said z = (A*v, 0). So, this belongs to R(A*) x W which
is in as we know G~ + H. So, now leta = (A*v, — v). So, take (A*v, — v). So, this if you
take (— A, v) this belongs to [ (G (A*)) but G (A*) is a subspace. So, this also which is equal

to G(A)l. But then minus of (A*v, — v) will also be in G(A)L because that is a subspace So,



= (A*v, — v)E G (A)l or G . Now, you take b = (0, v) and automatically that belongs to H *

and then you just add you get a + b is (A*v, O) which is equal to z and therefore, you have

those two inequalities. So, in particular, you have that ||b||<C||z|| and that tells you that

||v||<C ||A*v|| and that proves the remaining thing. So, this completes the proof. Fine.
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So, similar remark,

Remark: Similar statement, similar theorem can be stated and proved for surjectivity of A

You can try it as an exercise, it is just identical. So, you can go ahead.
So, now, if you look at another remark,

Remark: Let us take VV and W finite dimensional, then everything as I said is a continuous

linear operator in particular close densely defined everything and therefore, you have that A is

* . 1
onto, if and only if A is one-one because we have the R(A) equals N(A ) . So, and this is

equal so, you have similarly A" onto if and only if A is one-one.
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But here in infinite dimensions we have, we do not have, so here why is this true, because the
range is always closed because in finite dimensional range is always closed. That is why
these theorems work. But in infinite dimensions the R(A) may not be closed and therefore,

infinite dimensions range need not be closed. So, you can only say from the above theorem

that A is onto implies A" is one-one and then A™ onto implies A is one-one you cannot go

back and say the thing unlike in the finite dimensional case.
Let us take an example,

Example: LetV =W =1 5 again remember these are sequences which are square integrable

and therefore, you have l; is the same as the [ 5 and we know what is the duality bracket, it is



X

X X
just the usual inner product. So, let us take A(x) = (xl,Tz, T3’ o rf, 4 ). So, then

you can check A4 = A*, so this operator and then clearly A is one-one. But A is not onto

because what is the range the R(4) is set of all x in [ , to such that x, so this is the range

means it must be n times this must, so if you have let us say yel2 to be clearer.

X,
So, we have y, = TL where xEl2 and yelz. So, you have X, =ny. So,

R(A) = {yelz: » nzyi2 < 00}. So, this is a very stringent requirement. So, this is the range

of A, so this is not an onto map and then you can also check then the range is not closed. So,

with this we complete this chapter and we will do some exercises next.



