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We will now investigate relationship between the range and kernel of an operator and it is

adjoint. So, we have the following proposition.
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Proposition: So, let Banach, from contained in taking values in , densely𝑉,  𝑊 𝐴 𝐷(𝐴) 𝑉 𝑊

defined, linear operator. So, we set = the graph of , this is a subspace of and𝐺 𝐺 𝐴( ) 𝐴 𝑉× 𝑊

again contained in , these are subspaces. Then𝐻 = 𝑉×{0} 𝑉× 𝑊

1. ;𝑁 𝐴( ) × 0{ } = 𝐺∩𝐻

2. ;𝑉×𝑅 𝐴( ) = 𝐺 + 𝐻

3. ; and0{ }× 𝑁 𝐴⋆( ) =  𝐺⊥∩ 𝐻⊥

4. .𝑅 𝐴⋆( ) × 𝑊⋆ = 𝐺⊥ +  𝐻⊥

This is almost an immediate thing, so proof.

Proof: So, let us first consider . So, has a second coordinate , so will be𝐺∩𝐻 𝐻 0{ } 𝐺∩𝐻

something cross that is clear. Now, what is in , the first coordinate is the domain of0{ } 𝐺 𝐴

and the second coordinate if it has to be then this has to be the null space of . So, that is0{ } 𝐴

why we get that. So, now secondly for , so, if you take , so, the second𝐺 + 𝐻 𝐺 + 𝐻



coordinate has in and so, if you add anything you will only get the second coordinate{0} 𝐻

of and that is in the range of , so you will get so will be something cross range𝐺 𝐴( ) 𝐴 𝐺 + 𝐻

of A, and the first coordinate in is , so whatever you add to it you only get so you will𝐻 𝑉 𝑉

get . So similarly you do the other two yourself, only you use the fact𝑉×𝑅 𝐴( )

you must remember this relationship and in the same way you can do 3𝐼 𝐺 𝐴⋆( )( ) =  𝐺 𝐴( )⊥

and 4. So, that is this proposition.

So while we are here, let me note down some of the old results which we did which we will

be using. So if and closed subspaces of a Banach space , Then you have𝐺 𝐻 𝑉

and , these we did when we were in the𝐺∩𝐻 = (𝐺⊥ +  𝐻⊥)
⊥

𝐺⊥∩ 𝐻⊥ = (𝐺 +  𝐻)⊥

annihilator section and then you have from these two if you take the perp again,

and . And then we also had a theorem which(𝐺∩ 𝐻)⊥⊃ (𝐺⊥ +  𝐻⊥) (𝐺⊥∩ 𝐻⊥)
⊥

= 𝐺 + 𝐻

says that the following are equivalent. The following are equivalent, you have that

is closed,𝑖( ) 𝐺 + 𝐻

is closed and then𝑖𝑖( ) 𝐺⊥ +  𝐻⊥

= and𝑖𝑖𝑖( ) 𝐺 + 𝐻 (𝐺⊥∩ 𝐻⊥)
⊥

.𝑖𝑣( ) 𝐺⊥ +  𝐻⊥ =   (𝐺∩ 𝐻)⊥

This is another theory we treat. So, let us just keep that in mind, so that.
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So, now we have corollary to the previous proposition,

Corollary: So, Banach and from contained in taking values in , densely𝑉,  𝑊 𝐴 𝐷(𝐴) 𝑉 𝑊

defined and closed. So, we are adding another hypothesis then

, , ,  and .𝑁 𝐴( ) = 𝑅 𝐴⋆( )
⊥

𝑁 𝐴⋆( ) =  𝑅(𝐴)⊥ 𝑁(𝐴)⊥ ⊃ 𝑅 𝐴⋆( ) 𝑁 𝐴⋆( )
⊥

=  𝑅 𝐴( )

So, the first last two relationships if you take that will be that is in a dual𝑁(𝐴)⊥ (𝑅 𝐴⋆( )
⊥

)
⊥

space, so, that should contain the . Then is and this is in the basic𝑅 𝐴⋆( ) 𝑁 𝐴⋆( )
⊥

(𝑅 𝐴( )⊥)
⊥

space and therefore, it will be . So, these two conditions follow from the first two and𝑅 𝐴( )

therefore, we would need not to. So, we only have to prove the first one. So

Proof: So as usual, let us take = contained in and as before𝐺 𝐺 𝐴( ) 𝑉×𝑊 𝐻 = 𝑉×{0}

contained in . So, then we already saw, what was one of the relationships we saw?𝑉×𝑊

We saw that, that relationship here. So, we have .𝐺∩𝐻 = (𝐺⊥ +  𝐻⊥)
⊥

𝐺∩𝐻 = (𝐺⊥ +  𝐻⊥)
⊥

Now, what is ? is and therefore, we have here𝐺∩𝐻 𝐺∩𝐻 𝑁 𝐴( ) × 0{ }

. is . So, if you take the perp the it𝑁 𝐴( ) × 0{ } =  (𝐺⊥ +  𝐻⊥)
⊥

𝐺⊥ +  𝐻⊥ 𝑅 𝐴⋆( ) × 𝑊⋆ 𝑊⋆

will give you and here you have . And then if you just compare this you get the0{ } 𝑅 𝐴⋆( )
⊥

first relationship namely . Similarly, you have . So,𝑁 𝐴( ) = 𝑅 𝐴⋆( )
⊥

𝐺⊥∩ 𝐻⊥ = (𝐺 +  𝐻)⊥

. So, what is ? That is = , is𝐺⊥∩ 𝐻⊥ = (𝐺 +  𝐻)⊥ 𝐺⊥∩ 𝐻⊥ 0{ }× 𝑁 𝐴⋆( ) (𝐺 +  𝐻)⊥ 𝐺 + 𝐻

. So, the perp of it will be and therefore, you have that𝑉×𝑅 𝐴( ) 0{ }× 𝑅(𝐴)⊥ 𝑁 𝐴⋆( ) =  𝑅(𝐴)⊥

proves the second part of the perps. So, we have a relationship where the null space of an

operator is nothing but the annihilator of the range of the adjoint. Similarly, the null space of

that joint is nothing but the annihilator of the range of the original operator. So, this is a

connection between now we have a little more.
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So,

Theorem: Banach and from contained in taking values in which is closed𝑉,  𝑊 𝐴 𝐷(𝐴) 𝑉 𝑊

and densely defined. So, the previous corollary is true. So, in particular then the following are

equivalent:

1. is closed.𝑅(𝐴)

2. is closed.𝑅 𝐴⋆( )
So, this is closed to in . is closed in and then𝑅 𝐴( ) 𝑊 𝑅 𝐴⋆( ) 𝑉⋆

3. and𝑅 𝐴( ) =  𝑁 𝐴⋆( )
⊥

4. .𝑅 𝐴⋆( ) =  𝑁 𝐴( )⊥

So, now, if you look at the and definitions, which we have given before = ,𝐺 𝐻 𝐺 𝐺 𝐴( )

and then we had various relationships between the two in this particular𝐻 = 𝑉×{0}

corollary.

So, if you go back and check all this then this statement closed is the same as saying𝑅 𝐴( ) 

is closed in because, what is ? So, if this is closed then the𝐺 + 𝐻 𝑉×𝑊 𝐺 + 𝐻 𝑉×𝑅 𝐴( ).

product is closed and therefore, you have that. So, in the same way is closed will be𝑅 𝐴⋆( )
saying the is closed in and then the third one is saying that𝐺⊥ +  𝐻⊥ 𝑉⋆ × 𝑊⋆

and the fourth one is saying𝐺 + 𝐻 = (𝐺⊥ + 𝐻
⊥

)
⊥

𝐺⊥ + 𝐻
⊥

=  (𝐺∩𝐻)⊥ .

But, this theorem, we have already shown. The following are equivalent. So, we have these

four statements here and that is exactly what we had. So, that completes the proof, there's no

need to prove it again. Now,

Remark: Of course, all these theorems are naturally true for continuous linear operators

because they are automatically closed, densely defined because they are defined everywhere.

In particular, so if you take, so, remark again,

Remark: Suppose finite dimensional, then all operators are continuous linear operators𝑉, 𝑊

even all subspaces are closed and this is so we have that this is called the𝑅 𝐴( ) =  𝑁 𝐴⋆( )
⊥

usual Fredholm alternative and for instance, if you want to solve the equation 𝐴 𝑥( ) = 𝑏



where is a matrix say matrix, so, when will this have a solution? So, let us assume𝐴 𝑚×𝑛

that . Then if you take the inner product , this is by definition this is𝐴⋆𝑦 = 0 〈𝑦,  𝑏〉 〈𝑦,  𝐴𝑥〉

, here the duality bracket is the same as the inner product in finite dimensional spaces〈𝐴⋆𝑦,  𝑥〉

and then this is 0. So, if this implies that . And then by a dimension𝑏∈𝑅(𝐴) 𝑏∈ 𝑁 𝐴⋆( )
⊥

argument you can show this in fact, it is it works both ways and therefore, you have this

Fredholm alternative.

So, the annihilator of the kernel of the adjoint is precisely the range. So, this is in fact the

compatibility condition that must satisfy in order that this equation has a solution. So, this𝑏

equation has a solution if is in the range of and for that it needs to satisfy some condition𝑏 𝐴

and it is precisely saying that for every . So, that is and that result is〈𝑦,  𝑏〉 = 0 𝐴⋆𝑦 = 0

called the Fredholm alternative.
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Finally, we have a theorem on surjective maps. So, theorem, this is a very nice theorem So,

we say that

Theorem: Banach and is closed and densely defined. The following𝑉,  𝑊 𝐴: 𝐷 𝐴( )⊂𝑉→𝑊

are equivalent.

1. is onto. So, there is a map, it is surjective. So, that means .𝐴 𝑅 𝐴( ) = 𝑊

2. there exists a constant such that for all we have𝐶 > 0 𝑣∈𝐷 𝐴⋆( )
.‖𝑣‖

𝑊⋆≤𝐶 ‖𝐴⋆𝑣‖
𝑉⋆

So, such a map is called bounded below. A star is bounded below that means, you

have a constant going in the opposite of the usual thing you have norm A bounded



means, , but here having and that is called bounded‖𝐴⋆𝑣‖≤𝐶‖𝑣‖ ‖𝐴⋆𝑣‖≥𝐶‖𝑣‖

below.

3. You have that and is closed.𝑁(𝐴⋆) = {0} 𝑅(𝐴⋆)

So, these are characterizations of a surjective map. So, once you have a surjective map that

means, you can solve the equations. That is the important thing, why we are interested in

such things. So, proof,

Proof: Let us prove that . So, is onto, so is and hence closed. So, we can1 ⇒ 3 𝐴 𝑅(𝐴) 𝑊

apply the previous theorem because we have closed bounded operators So, is closed, so𝑅 𝐴( ) 

you have so many things. So, will be . And in fact, will be closed. So,𝑅(𝐴⋆) 𝑁 𝐴( )⊥ 𝑅(𝐴⋆) 

is closed implies is closed and you also have is . And since is𝑅(𝐴) 𝑅(𝐴⋆) 𝑁(𝐴⋆) 𝑅 𝐴( )⊥ 𝑅(𝐴)

whole of all that we have proved even much before is and therefore, and𝑊 𝑁(𝐴⋆) 𝑅 𝐴( )⊥

since is whole of , has to be . So, this proves 3. is closed and this.𝑅(𝐴) 𝑊 𝑅 𝐴( )⊥ {0} 𝑅(𝐴⋆) 

So let us say That means is and closed. So, then you have3 ⇒ 1.  𝑁(𝐴⋆) {0} 𝑅(𝐴⋆)

by the previous theorem, , that is number 3 and therefore𝑅 𝐴( ) =  𝑁 𝐴⋆( )
⊥

𝑅 𝐴( ) =  𝑁 𝐴⋆( )
⊥

and therefore has to be . So implies onto. So, we approved that.𝑁(𝐴⋆) = {0} 𝑁 𝐴⋆( )
⊥

𝑊 𝐴

So, thus 1 is equivalent to 3. So, now we want to show the 2 and 3 are also equivalent.
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So, the condition that for all . So, if automatically2 ⇒ 3.   ‖𝐴⋆𝑣‖≥𝐶‖𝑣‖ 𝑣∈𝐷(𝐴⋆) 𝐴⋆𝑣 = 0

this means so . So, this implies that . And then let us take a𝐴⋆𝑣 = 0 ⇒𝑣 = 0 𝑁 𝐴⋆( ) = {0}

sequence in such that in , then again by the boundedness below we{𝑣
𝑛
} 𝐷 𝐴⋆( ) 𝐴⋆𝑣

𝑛
→𝑓 𝑉⋆

have . is Cauchy. So, implies is Cauchy. We are‖𝑣
𝑛

− 𝑣
𝑚

‖ ≤  𝐶‖𝐴⋆𝑣
𝑛

− 𝐴⋆𝑣
𝑚

 ‖ {𝐴⋆𝑣
𝑛
} {𝑣

𝑛
}

in the Banach space. So, , and therefore, is closed, this is always true and𝑣
𝑛
→𝑣 𝐴⋆𝑣

𝑛
→𝑓 𝐴⋆

therefore, this implies that and . Therefore, if goes to some ,𝑣∈𝐷 𝐴⋆( ) 𝐴⋆ 𝑣( ) = 𝑓 {𝐴⋆𝑣
𝑛
} 𝑓

, so, this implies , that is is closed. So, then finally, this proves 3𝑓 = 𝐴⋆ 𝑣( ) 𝑓∈ 𝐷 𝐴⋆( ) 𝑅 𝐴⋆( )
completely.



So, now we want to show . So, we go back to the notation which we had earlier about3 ⇒ 2

and , = , and then we, we have implies that𝐺 𝐻 𝐺 𝐺 𝐴( ) 𝐻 = 𝑉×{0} 𝑁 𝐴⋆( ) = {0}

. So, because what is we computed it somewhere. number 3𝐺⊥∩ 𝐻⊥ = {0} 𝐺⊥∩ 𝐻⊥ 𝐺⊥∩ 𝐻⊥

is If then is in fact , so we have. So then and you also0{ }× 𝑁 𝐴⋆( ). 𝑁 𝐴⋆( ) = {0} 𝐺⊥∩ 𝐻⊥ {0}

have that closed implies is closed again. What is ?𝑅 𝐴⋆( ) 𝐺⊥ +  𝐻⊥ 𝐺⊥ +  𝐻⊥

. So, if number 4 and therefore, if is closed you have the𝐺⊥ +  𝐻⊥ =  𝑅 𝐴⋆( ) ×  𝑊⋆ 𝑅 𝐴⋆( )
is closed. So, we are in the situation where the sum of two close subspaces is𝐺⊥ +  𝐻⊥

closed and the intersection is . So, this is in fact a direct sum. So, then by a proposition{0}

which we proved by the open mapping theorem there exists a such that if you have𝐶 > 0

then and and you have two𝑧∈ 𝐺⊥ +  𝐻⊥ 𝑧 = 𝑎 + 𝑏,   𝑎∈𝐺⊥,  𝑏∈ 𝐻⊥ ‖𝑎‖≤𝐶‖𝑧‖,  ‖𝑏‖≤𝐶‖𝑧‖

subspaces you have this, but now, since in fact and are unique, there is𝐺⊥∩ 𝐻⊥ = {0}  𝑎   𝑏

no choice of decomposition, there is only one decomposition available. So, if we find it that

is the correct one and it will automatically satisfy the condition.
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So, let us take then you said . So, this belongs to which𝑣∈𝐷 𝐴⋆( ) 𝑧 = (𝐴⋆𝑣,  0) 𝑅 𝐴⋆( ) × 𝑊⋆

is in as we know . So, now let . So, take . So, this if you𝐺⊥ +  𝐻⊥ 𝑎 = (𝐴⋆𝑣, − 𝑣) (𝐴⋆𝑣, − 𝑣)

take this belongs to but is a subspace. So, this also which is equal(− 𝐴⋆𝑣, 𝑣) 𝐼 𝐺 𝐴⋆( )( ) 𝐺 𝐴⋆( )
to . But then minus of will also be in because that is a subspace So,𝐺(𝐴)⊥ (𝐴⋆𝑣, − 𝑣) 𝐺(𝐴)⊥



or . Now, you take and automatically that belongs to= 𝐴⋆𝑣, − 𝑣( )∈ 𝐺(𝐴)⊥ 𝐺⊥ 𝑏 = (0, 𝑣) 𝐻⊥

and then you just add you get is which is equal to and therefore, you have𝑎 + 𝑏 𝐴⋆𝑣,  0( ) 𝑧

those two inequalities. So, in particular, you have that and that tells you that‖𝑏‖≤𝐶‖𝑧‖

and that proves the remaining thing. So, this completes the proof. Fine.‖𝑣‖≤𝐶‖𝐴⋆𝑣‖
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So, similar remark,

Remark: Similar statement, similar theorem can be stated and proved for surjectivity of .𝐴⋆

You can try it as an exercise, it is just identical. So, you can go ahead.

So, now, if you look at another remark,

Remark: Let us take and finite dimensional, then everything as I said is a continuous𝑉 𝑊

linear operator in particular close densely defined everything and therefore, you have that is𝐴

onto, if and only if is one-one because we have the equals . So, and this is𝐴⋆ 𝑅(𝐴) 𝑁(𝐴⋆)
⊥

equal so, you have similarly onto if and only if is one-one.𝐴⋆ 𝐴
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But here in infinite dimensions we have, we do not have, so here why is this true, because the

range is always closed because in finite dimensional range is always closed. That is why

these theorems work. But in infinite dimensions the may not be closed and therefore,𝑅(𝐴)

infinite dimensions range need not be closed. So, you can only say from the above theorem

that is onto implies is one-one and then onto implies is one-one you cannot go𝐴 𝐴⋆ 𝐴⋆ 𝐴

back and say the thing unlike in the finite dimensional case.

Let us take an example,

Example: Let again remember these are sequences which are square integrable𝑉 = 𝑊 = 𝑙
2

and therefore, you have is the same as the and we know what is the duality bracket, it is 𝑙
2
⋆ 𝑙

2



just the usual inner product. So, let us take . So, then𝐴 𝑥( ) = (𝑥
1 

,
𝑥

2

2 ,
𝑥

3

3 ,  ⋅,  ⋅,  ⋅,
𝑥

𝑛

𝑛 ,  ⋅,  ⋅,  ⋅,)

you can check , so this operator and then clearly is one-one. But is not onto𝐴 = 𝐴⋆ 𝐴 𝐴

because what is the range the is set of all in to such that , so this is the range𝑅 𝐴( ) 𝑥 𝑙
2

𝑥

means it must be times this must, so if you have let us say to be clearer.𝑛 𝑦∈𝑙
2

So, we have where and . So, you have . So,𝑦
𝑖

=  
𝑥

𝑖

𝑛 𝑥∈𝑙
2

𝑦∈𝑙
2

𝑥
𝑖

= 𝑛𝑦
𝑖

. So, this is a very stringent requirement. So, this is the range𝑅 𝐴( ) = 𝑦∈𝑙
2
:  ∑ 𝑛2𝑦

𝑖
2 < ∞

⎰
⎱

⎱
⎰

of , so this is not an onto map and then you can also check then the range is not closed. So,𝐴

with this we complete this chapter and we will do some exercises next.


