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So, another example.



Example: So, let us take . And what is the ? Is𝑙
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. Define two operators, so . So, you push it to the right, put a zero in𝑇 𝑥( ) = (0, 𝑥
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, 𝑥

2
,  ⋅,  ⋅,  ⋅,  )

the front so, this is called the right shift operator. Similarly, we are going to define as𝑆(𝑥)

. So, you push it to the left and you get rid of the first coordinate and𝑆 𝑥( ) = (𝑥
2
, 𝑥

3
,  ⋅,  ⋅,  ⋅,  ) 𝑥
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this is called the left shift operator. Both of them are continuous linear operators because

in fact, and . So, we have these two are continuous linear operators.‖𝑇𝑥‖ =  ‖𝑥‖ ‖𝑆𝑥‖≤ ‖𝑥‖

So, one can easily check that and . Sure, of course, we are identifying is the𝑇⋆ = 𝑆 𝑆⋆ = 𝑇 𝑙
2
⋆

same as . So,  that is why they are in the same spaces.𝑙
2

So, now, we will look at some properties of this adjoint. So, the first important property so,

Proposition: Banach, is densely defined. So, that the adjoint is defined,𝑉, 𝑊 𝐴: 𝐷 𝐴( )⊂𝑉→𝑊

then is closed.𝐴⋆

Proof: So, to show is closed. So, we take converges to in and converges𝐺(𝐴⋆) (𝑣
𝑛
) 𝑣 𝑊⋆ (𝐴⋆𝑣

𝑛
)

to in . And what must we show, we must show? We have to show two things now, because𝑓 𝑉⋆

we are dealing with unbounded operators, which may not be defined everywhere but only on a

certain domain. So, first we have to show, that and second, after that we can show that𝑣∈𝐷(𝐴⋆)

. So, we have to show both these things. So, but what is, take any , what is the𝐴⋆𝑣 = 𝑓 𝑢∈𝐷(𝐴)

definition of the adjoint? So, . Now you pass to the limit so, you get〈𝐴⋆𝑣
𝑛
,  𝑢〉 =  〈𝑣

𝑛
,  𝐴𝑢〉

. So, . So, this implies that . And〈𝑓,  𝑢〉 =  〈𝑣,  𝐴𝑢〉 〈𝑣,  𝐴𝑢〉| | ≤ ‖𝑓‖‖𝑢‖ 𝑣∈𝐷(𝐴⋆)

here, which is true for all tells you that , because it satisfies〈𝑓,  𝑢〉 =  〈𝑣,  𝐴𝑢〉 𝑢∈𝐷 𝐴( ) 𝑓 =  𝐴⋆

the defining condition for . So, this proves this proposition.𝐴⋆𝑣
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Now the graph of and graph of are related by a very simple relationship. So, let us now𝐴 𝐴⋆

define . So, we take and map it to . So, we are just flipping𝐼:  𝑊⋆× 𝑉⋆ → 𝑉⋆ × 𝑊⋆ (𝑣, 𝑓) (− 𝑓, 𝑣)

the coordinates and putting a minus sign in front. And proposition,

Proposition: Banach, is densely defined, as above then𝑉, 𝑊 𝐴: 𝐷 𝐴( )⊂𝑉→𝑊 𝐼

.𝐼 𝐺 𝐴⋆( )( ) = 𝐺 𝐴( )⊥

So, you see the, annihilator and the graphs and annihilators they all come together. So, proof two

lines.

Proof: So, let arbitrary. So , this means what? . And that implies𝑢∈𝐷 𝐴( ) 〈𝑣, 𝑓〉∈𝐺 𝐴⋆( ) 𝑓 = 𝐴⋆(𝑣)

, this is for every . I am not putting the subscripts, we know where〈𝑓,  𝑢〉 =  〈𝑣,  𝐴𝑢〉 𝑢∈𝐷 𝐴( )

these things are acting and, therefore. So, this is equivalent to saying

for every . Now, is a typical element of the〈 − 𝑓,  𝑢〉
𝑉⋆,𝑉

+ 〈𝑣,  𝐴𝑢〉
𝑊⋆,𝑊

= 0 𝑢∈𝐷 𝐴( ) (𝑢, 𝐴𝑢)

graph of and this tells you that is killing all of them. So, that means that𝐴 (− 𝑓, 𝑣)

and all these implications go, work both ways. And therefore, that proves this𝐼 𝑣, 𝑓( )∈ 𝐺 𝐴( )⊥

proposition.



So, now, we come back to the question of bounded operators.
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So, we have the following important proposition.

Proposition: Banach, is densely defined and closed. So, we are making an𝑉, 𝑊 𝐴: 𝐷 𝐴( )⊂𝑉→𝑊

extra hypothesis on this. Then the following are equivalent:

, is bounded, ,  and is bounded.(𝑖) 𝐷 𝐴( ) = 𝑉 (𝑖𝑖) 𝐴 (𝑖𝑖𝑖) 𝐷 𝐴⋆( ) = 𝑊⋆ (𝑖𝑣) 𝐴⋆ 



All these and in this case we have, everything is a continuous linear operator now, so

.‖𝐴‖ = ‖𝐴⋆‖

Proof: . So is defined on the entire space, they are all Banach spaces. And(𝑖)⇒(𝑖𝑖) 𝐷 𝐴( ) = 𝑉 𝐴

is closed. That means the graph is close. So, this is just a closed graph theorem. So, that is it.𝐴

Now is bounded. Therefore, we want to so. So, let we have already(𝑖𝑖)⇒(𝑖𝑖𝑖) 𝐴 𝐷 𝐴( ) 𝑣∈𝑊⋆

done this calculation a few minutes ago. So, if you take and then you take𝑢∈𝐷 𝐴( )

. So, this implies that by definition and therefore,〈𝑣,  𝐴𝑢〉| | ≤ ‖𝑣‖‖𝐴𝑢‖ ≤ ‖𝑣‖𝐶‖𝑢‖ 𝑣∈𝐷 𝐴⋆( )
We did this a little earlier already.𝐷 𝐴⋆( ) = 𝑊⋆.

Now We know that is closed and, . Therefore, again by the close(𝑖𝑖𝑖)⇒(𝑖𝑣) 𝐴⋆ 𝐷 𝐴⋆( ) = 𝑊⋆

graph theorem, we have that is a bounded linear operator or continuous linear operator. So,𝐴⋆

now we only have to show

So, first claim, is closed. So, if is bounded, then is closed. So, let(𝑖𝑣)⇒(𝑖) 𝐷 𝐴⋆( ) 𝐴⋆ 𝐷 𝐴⋆( )
in and . Then because is bounded. So,𝑣

𝑛
→𝑣 𝑊⋆ 𝑣

𝑛
∈ 𝐷 𝐴⋆( ) ‖𝐴⋆(𝑣

𝑛
− 𝑣

𝑚
) ‖≤𝐶‖𝑣

𝑛
− 𝑣

𝑚
‖ 𝐴⋆

this implies that is Cauchy. So, converges to some , but then so, converges{𝐴⋆𝑣
𝑛
} 𝐴⋆𝑣

𝑛{ } 𝑓 {𝑣
𝑛
}

to , goes to therefore, when is closed and therefore, this implies that and𝑣 𝐴⋆𝑣
𝑛{ }  𝑓 𝐴⋆ 𝑣∈ 𝐷 𝐴⋆( )

. Therefore, we have the is closed.𝐴𝑣 = 𝑓 𝐷 𝐴⋆( )
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Now, we are going to, we will set to be . Graph of this is contained in and to𝐺 𝐺(𝐴) 𝐴 𝑉×𝑊 𝐻

be which is again in . Now, by hypothesis is closed, and is trivially0{ }×𝑊 𝑉×𝑊 𝐺(𝐴) 0{ }×𝑊

closed. So, there is no problem. And now what can you say about ? So you are taking an𝐺 + 𝐻 

element in , How does an element in look like? The first coordinate is from the𝐺(𝐴) 𝐺(𝐴)

domain, second component is . So, and here they are taking any element in .𝐴(𝑢) 𝑢,  𝐴𝑢( ) 0 𝑊

So, when you add these two, you will get elements in the domain and any element in , so this𝑊

will be . Now flipping and putting a minus sign and therefore we𝐷 𝐴( )×𝑊 𝐺 𝐴( )⊥ = 𝐼 𝐺 𝐴⋆( )( )
have . Now what is ? So, , you want to kill everything here. So, the second one,𝐺⊥ +  𝐻⊥ 𝐻⊥ 𝐻⊥

if you want to kill all of you will have to be 0 and if you want to kill 0 any, any element is𝑊

fine. So, this will be .𝑉⋆×{0}

So, if you so, if you add these two, so you have here in the first component and anything. So,𝑉⋆

this will be cross second component is 0 and in , the first component was that I𝑉⋆ 𝐺 𝐴⋆( ) 𝐷 𝐴⋆( )
have flipped it and so, in j, so this will be . And then is given to be closed,𝐷 𝐴⋆( ) 𝐺⊥ +  𝐻⊥

because is closed and . So, will be closed and then we prove this theorem,𝐷 𝐴⋆( ) 𝑉⋆ 𝐺⊥ +  𝐻⊥

that this implies, this is the only part of that theorem which I did not prove.



This implies that is closed, that is is therefore, is closed𝐺 + 𝐻 𝐺 + 𝐻 𝐷 𝐴( )×𝑊 𝐷 𝐴( )

therefore, equals , which will be equal to and that is the first part of the theorem,𝐷 𝐴( ) 𝐷 𝐴( ) 𝑉

which we wanted to prove. So, this proves the equivalence of all the statements. So, now, let us,

so for all and you have . So,𝑢∈𝑉 𝑣∈ 𝑊⋆ 〈𝑣,  𝐴𝑢〉
𝑊⋆,𝑊

= 〈𝑢,  𝐴⋆𝑣〉
𝑉⋆,𝑉

〈𝑣,  𝐴𝑢〉| | ≤ ‖𝐴⋆‖‖𝑣‖‖𝑢‖

for every element in the dual space so, for all and then we have from , we saw𝑣∈ 𝑊⋆ 〈𝑣,  𝐴𝑢〉| |

corollary because what is the corollary of the Hahn Banach theorem, in fact is a max‖𝐴𝑢‖

namely, the norm of the vector is sup of less than equal to 1, . So, will be less‖𝑣‖ 〈𝑣,  𝐴𝑢〉| | ‖𝐴𝑢‖

than or equal to and this implies that .‖𝐴⋆‖‖𝑢‖ ‖𝐴‖ ≤ ‖𝐴⋆‖

On the other hand, the same relationship will tell you . And is now〈𝐴⋆𝑣, 𝑢〉| | ≤ ‖𝑣‖‖𝐴‖‖𝑢‖ 𝐴⋆𝑣

a dual element so, you just have to take the supremum over all and therefore, this tells you that𝑢

and therefore, you have . So, we have both inequalities and that‖𝐴⋆𝑣‖ ≤ ‖𝐴‖‖𝑣‖  ‖𝐴⋆‖ ≤ ‖𝐴‖

shows that the two norms are equivalent.

So, we will continue with some properties of the dual, such as the adjoints. So, we will connect

what is the relationship between the range null space of the, of an operator and the range and null

space of the adjoints and in between some annihilators will have to come in. So, we will see how

these things work out.


