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We will now discuss unbounded operators and adjoints. So, we will now look at linear maps,

which are not necessarily defined on the entire vector space and also which may not be bounded

or continuous in the sense that we have known up to now. The continuous linear operators of

bounded linear operators which we have studied so far will come as a subclass of this, as a

particular case.

So, let us have and Banach spaces, so an unbounded operator, linear operators is a linear𝑉 𝑊 𝐴

map defined on a subspace contained in taking values in . So, such a map so, it is a𝐷(𝐴) 𝑉 𝑊

linear map, but it can be defined only on a subspace, not necessarily the entire space. So, we say

is the domain of , we denote by is the range or image of . So, we say that is𝐷(𝐴) 𝐴 𝑅(𝐴) 𝐴 𝐴

from contained in into .𝐷(𝐴) 𝑉 𝑊

So, this will be contained in and this will be contained in . The operator is𝐷(𝐴) 𝑉 𝑅 𝐴( ) 𝑊

bounded, is said to be bounded if there exists positive, such that , only now we𝐶 ‖𝐴𝑥‖
𝑊

≤𝐶‖𝑥‖
𝑉



have for every because that is where the operator is defined. So, the, then it is said to be𝑥∈𝐷(𝐴)

densely defined, A is densely defined, if is dense in , that is . Then we define𝐷(𝐴) 𝑉 𝐷(𝐴) = 𝑉

the graph of , is set of all , where and this, of course is contained in𝐴 𝐺(𝐴) (𝑥,  𝐴𝑥) 𝑥∈𝐷(𝐴)

.𝑉×𝑊
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And the operator is closed, if is closed, so the graph of should be, so, is called𝐴 𝐺(𝐴) 𝐴 𝐺(𝐴)

the graph of . So, it is a closed subspace of , then you say the operator is closed. So, to𝐴 𝐺×𝑊

define an operator, we need to specify two things. So, to define , we need 1: . So, we have𝐴 𝐷(𝐴)

to say what, where it is defined and 2: what its action is? for every . So, we have to𝐴(𝑥) 𝑥∈𝐷

specify both these things in order to completely define an operator .𝐴
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So, then the null space of or equals set of all such that . Unlike norm𝐴 𝑁(𝐴) 𝑥∈𝐷(𝐴) 𝐴 𝑥( ) = 0

linear, continuous linear operator you cannot say that is closed. However𝑁(𝐴)

Remark: If closed, you can check this very easily, then is closed.𝐴 𝑁(𝐴)

Now, all this terminology is a little bit unfortunate. Normally, logically, we should have first

considered these operators and then considered the continuous linear operators or bounded linear

operators, which we have been studying (06:04) as a subclass, but historically this is how it has

been evolving. And so we will use this terminology.

Henceforth, of course, I will say continuous linear operator to distinguish between bounded

linear operators which may not be defined on the whole space. So, for me a continuously

operated means , and is bounded in the usual, as we have been studying up to now.𝐷 𝐴( ) = 𝑉 𝐴

Otherwise, when I say bounded operator then it may be just defined on and not on the𝐷(𝐴)

whole space.

So, let us give an example.

Example: Let us take , and let us take , continuously𝑉 = 𝑊 = 𝐶([0, 1]) 𝐷 𝐴( ) = 𝐶1 0, 1[ ]

differentiable functions on the closed interval . And then you define , which is the0, 1[ ] 𝐴 𝑢( ) = 𝑢'



first derivative of this. So, if is in , then , it is a function. So, its derivative is𝑢 𝐷 𝐴( ) 𝑢 𝐶1

continuous and that is exactly where we are. So, now, first of all, is densely defined. Because𝐴 

is dense . In particular, you have the (07:33) approximation theorem. So, then it𝐶1 0, 1[ ] 𝐶([0, 1])

is, range is entire i.e., . Because if you take any continuous function, then it is𝑅(𝐴) 𝑊 𝐶([0, 1])

indefinite integral is a differentiable function and its derivative is the given function. So, by the

fundamental theorem of calculus you have, so this is nothing but the fundamental theorem of

calculus. Then what is , this is just constant functions, so that is precisely the thing.𝑁(𝐴)

Now, 4: suppose, what is convergence. So, what is the norm here, it is a usual soup norm, which

is the norm infinity and therefore, convergence in this norm means uniform convergence and

therefore, if you take and which is converges to , then we know that is𝑢
𝑛
→𝑢 𝐴 𝑢

𝑛( )  𝑢
𝑛
'  𝑣 𝑢

𝑛

converges to uniformly and converges uniformly, then we know from real analysis course on𝑢
𝑛
'   

uniform convergence that and . And therefore, this implies that is closed,𝑢∈𝐶1 0, 1[ ] 𝑢'∈𝑉 𝐺(𝐴)

that is is closed.𝐴

5: is not bounded. We have already seen this, that is you cannot have a constant, so that does𝐴

not exist such that . And for this we took the sequence, we have already seen𝐶  ‖𝑢'‖
∞

≤𝐶‖𝑢‖
∞

this . So, then norm , is always 1, is and therefore, you can never𝑢
𝑛

𝑡( ) =  𝑡𝑛 𝑢
𝑛

‖ 𝑢
𝑛
‖

∞
 ‖𝑢

𝑛
'  ‖

∞
𝑛

have a constant like this, because is a finite number. So, this is an example.𝐶
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So, now we are going to make an important definition and for that we need some notation. This

is called the duality bracket. So, we take and let us take . So, up to now the evaluation𝑥∈𝑉 𝑓∈𝑉⋆

I have denoted as , now I am going to define as , I should probably write it the other𝑓(𝑥) 〈𝑓,  𝑥〉

way around, does not matter. So, this is , and to ensure where we are working, so I will say〈𝑓,  𝑥〉

. So, it is a bracket, the first element in the bracket will be the linear functional and is 〈𝑓,  𝑥〉
𝑉⋆,𝑉

𝑥

the point where it is being evaluated and this bracket is just the evaluation of these two. And to

say, where we are working. So, we are saying and and therefore, this is a notation for the𝑉⋆ 𝑉

duality bracket.

So, now, let be Banach and from contained in taking values in , a densely𝑉,  𝑊 𝐴 𝐷(𝐴) 𝑉 𝑊

defined operator, this is important. So, now, we are going to make a definition of a subspace.

Definition: So, is equal to set of all, , such that there exists a constant positive, which𝑍 𝑣∈𝑊⋆ 𝐶

of course, depends on , such that for all , we have . So, here is𝑣 𝑥∈𝐷(𝐴) 〈𝑣,  𝐴𝑥〉| |≤𝐶‖𝑥‖ 〈𝑣,  𝐴𝑥〉 

, because , so, this duality bracket there and of course, is a norm 〈𝑣,  𝐴𝑥〉
𝑊⋆,𝑊

𝑣∈𝑊⋆,   𝐴𝑥∈𝑊 ‖𝑥‖

.‖𝑥‖
𝑉

So, this is , so then is a subspace that you can easily check. So, if and , define𝑍 𝑍 𝑣∈𝑍 𝑥∈𝐷(𝐴)

again, this is . Then . So, is a continuous linear𝑔 𝑥( ) =  〈𝑣,  𝐴𝑥〉 〈𝑣,  𝐴𝑥〉
𝑊⋆,𝑊

𝑔(𝑥)| |≤𝐶‖𝑥‖ 𝑔



functional. So, by Hahn Banach there exists an …… extension, to all of . Why did they𝑔
𝑣

𝑣

leave some space here? I want to write a unique extension.

Hahn Banach extensions is not, not unique, but now it will be unique because . So, if𝐷(𝐴) = 𝑉

you have something even in Hahn Banach theorem, we have seen if some, if you were, what is

the test of density? If something vanishes, linear function vanishes on the space, then it vanishes

everywhere. So, that automatically tells you that if you have which is defined on a dense𝑔

subspace, then it has a unique extension to the, to all of . So, is again a continuous linear𝑉 𝑔
𝑣

functional. So, now . So, starting with something in , we have defined something in𝑔
𝑣
∈ 𝑉⋆ 𝑊⋆ 𝑉⋆

provided it is in . So, we have, we have taken .𝑍 𝑣∈𝑍
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So, now we make a definition.

Definition: So, Banach, from in taking values in , densely defined, as𝑉,  𝑊 𝐴 𝐷(𝐴) 𝑉 𝑊 𝑍

defined above and for , as defined above. Then we set which is contained in𝑣∈𝑍 𝑔
𝑣

𝐷(𝐴⋆) = 𝑍

and is defined by . The map is called the adjoint of .𝑊⋆ 𝐴⋆:  𝐷(𝐴⋆)⊂𝑊⋆ → 𝑉⋆ 𝐴⋆𝑣 =  𝑔
𝑣

𝐴⋆ 𝐴

So, this is the so, the adjoint is defined for densely defined operators, of course, may not be𝐴⋆ 

densely defined it is defined on or which is some subspace that is all we know, we have𝑍 𝐷(𝐴⋆)

no information other than that.

So, the important characterization is, if and , you have, from the definition of𝑢∈𝐷(𝐴) 𝑣∈ 𝐷(𝐴⋆)

, what is the definition of ? Here it is . So, we have , this is𝑔
𝑣

𝑔
𝑣

〈𝑣,  𝐴𝑥〉 〈𝐴⋆ 𝑣,  𝑢〉 〈𝐴⋆ 𝑣,  𝑢〉
𝑉⋆,𝑉

because , this , this is nothing but by the definition and this is .𝐴⋆ 𝑣∈ 𝑉⋆ 𝑢∈𝑉 〈𝑣,  𝐴𝑢〉 〈𝑣,  𝐴𝑢〉
𝑊⋆,𝑊

So, this is the fundamental defining relationship for the adjoint, and if any map, any continuous

linear functional in defines this relationship then it, by the density and uniqueness we know𝑉⋆

that it has to be .𝐴⋆ 𝑣



So, let us briefly look at continuous linear functionals. So, remark,

Remark: Suppose continuous linear functional that means, and𝐴: 𝑉→𝑊 𝐷 𝐴( ) = 𝑉

So, this we have. Now, we will take any , you have that‖𝐴𝑥‖ ≤ ‖𝐴‖‖𝑥‖. 𝑣∈𝑊⋆

. And therefore, you have, so will be the〈𝑣,  𝐴𝑥〉
𝑊⋆,𝑊

|| ||≤ ‖𝑣‖ ‖𝐴𝑥‖ ≤ ‖𝑣‖‖𝐴‖‖𝑥‖ ‖𝑣‖‖𝐴‖

constant and therefore, you have that entire is the domain . So, the adjoint is defined𝐶 𝑊⋆ 𝐷(𝐴⋆)

on the entire space. So, this is information. So, if you have continuous linear operators, in fact,

we will see a little more about this in a theorem at the end of this session.
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So, let us see some examples.

Example: So, let us look at finite dimensional spaces. So, in the finite dimensional space, all

subspaces are closed. Therefore, in particular if you have contained in finite𝐷(𝐴) 𝑉

dimensional, densely defined, so, this means , but is same as because𝐷(𝐴) = 𝑉 𝐷(𝐴) 𝐷(𝐴)

every subspace in finite dimensional space is automatically closed. Therefore, when you say in

the finite dimensional case, that is it is always defined on the entire space, a densely defined

operator is .𝐴



So, we can and you know once you have this, we have already observed, so that you can define

the adjoint on all of the dual space, which is again isomorphic to the same space. So, let us take

and then the dual is the same. So, if , namely and if y belongs to𝐶𝑛 𝑥∈𝐶𝑛 𝑥 = (𝑥
1
,  𝑥

2
,  ⋅⋅⋅, 𝑥

𝑛
)

, which is also again and , then you have is nothing but(𝐶𝑛)
⋆

𝐶 𝑛 𝑦 = (𝑦
1
,  𝑦

2
,  ⋅⋅⋅, 𝑦

𝑛
) 〈𝑦, 𝑥〉

. This is the convention, if you have to , then this conjugate will not be there, it will
𝑖=1

𝑛

∑ 𝑥
𝑖
𝑦

𝑖
𝑅𝑛 𝑅𝑛

be just . 
𝑖=1

𝑛

∑ 𝑥
𝑖
𝑦

𝑖

Now, let be a linear transformation. So, then A will be represented by some matrix𝐴:  𝐶𝑛 → 𝐶𝑚

which is matrix. So, rows and columns. So, what is so this will be by(𝑎
𝑖𝑗

) 𝑚×𝑛 𝑚 𝑛  〈𝐴⋆𝑦,  𝑥〉

definition and therefore, that will be . So, now, I want to write it in the〈𝑦,  𝐴𝑥〉
𝑖=1

𝑛

∑ (
𝑗=1

𝑛

∑ 𝑎
𝑖𝑗

𝑥
𝑗
) 𝑦

𝑖

form . So, I should bring out the 's outside and then bring in the with, everything〈𝐴⋆𝑦,  𝑥〉 𝑥 𝑦

should be in conjugate form for the . So, this will be equal to And therefore,𝐴⋆𝑦
𝑗=1

𝑛

∑ (
𝑗=1

𝑛

∑ 𝑎
𝑖𝑗

𝑦
𝑖
)𝑥

𝑗
.  

we have, if is the matrix , then it automatically follows that is nothing but . And this𝐴⋆ (𝑎
𝑖𝑗
⋆ ) 𝑎

𝑖𝑗
⋆ 𝑎

𝑗𝑖

is the usual conjugate transpose of the matrix . So, this is how the adjoint works, in case of real,𝐴

just the usual transpose of the matrix. There is no conjugation involved.


