Functional Analysis Professor S. Kesavan Department of Mathematics IMSc Examples of Normed Linear Spaces

So, let us recapitulate.

(Refer Slide Time: 00:20)

4 () ·	
R RN Z= (R, R)	
$\ \mathbf{z}\ = \left(\sum_{i=1}^{N} \mathbf{z}_{i} ^{p}\right)^{p} $	
Defini 1 < p < as The Conjugate exponent pt is def	had by
- <u>-</u> + <u>i</u> =1 \$	
P=2 => pt=2 Remark: 1 <pt<0< td=""><td></td></pt<0<>	
$p = 3 \Rightarrow p^{2} = \frac{3}{2}$	
Lemma. a, b = R, a, b 30, Kp <00	
at the sate	

We have $x \in \mathbb{R}^N$, $x = (x_1, x_2, ..., x_N)$, and we have $||x||_p = \left(\sum_{|i=1,2,...N|} |x_i|^p\right)^{1/p}$, $1 . We want to show that <math>||.||_p$ satisfies the triangle inequality so that this will define a norm. We also saw that if this defines a norm, then \mathbb{R}^N with this norm is in fact a complete normed linear space; or in other words a Banach space.

We make the following definition:

If $1 , then the conjugate exponent <math>p^{i}$ is defined by $\frac{1}{p} + \frac{1}{p^{i}} = 1$. For instance if p = 2, then we

have that $p^i = 2$; if p = 3, then $p^i = \frac{3}{2}$ and so on.

Remark. $1 < p^i < \infty$.

Now, we have following lemma.

Lemma. Let $a, b \in R, a, b \ge 0, 1 . Then <math>a^{\frac{1}{p}} b^{\frac{1}{p^{i}}} \le \frac{a}{p} + \frac{b}{p^{i}}$.

So, if you look at this, if p=2, then $p^{i}=2$; and therefore $a^{\frac{1}{p}}b^{\frac{1}{p^{i}}}$ is nothing but the square root of

ab, and the right hand side becomes $\frac{a+b}{2}$. So, this is nothing but the arithmetic mean greater than or equal to the geometric mean. Therefore, the above lemma is a generalization of this particular inequality; so let us try to prove the lemma.

(Refer Slide Time: 03:35)

Proof of lemma. So, let $t \ge 1$ and $0 \le k \le 1$. Then, you look at the function $f(t) = k(t-1) - t^k + 1$. Then $f'(t) = k(1-t^{k-1}) \ge 0$ (as $t \ge 1$, $0 \le k \le 1$). So, f is an increasing function. You also have that f(1)=0 and therefore $f(1)\ge 0$, $\forall t\ge 1$. This implies that $t^k \le k(t-1)+1$. So, now if you look at the inequality which we want to prove, you have that, if a or b is 0 then there is nothing to prove. Thud, we can assume that a and b are not 0; so in particular let me assume that $a \ge b > 0$. Then I

put $i\frac{a}{b}, k = \frac{1}{p}$ and we would get the inequality which we wanted. If $b \ge a > 0$, then we put $t = \frac{b}{a}, k = \frac{1}{p^{i}}$; and then we would get the required inequality. This proves the lemma.

Using this Lemma, we now prove an important result which is called Holder's inequality.

Holder's inequality. Let $1 , <math>p^{i}$ is the conjugate exponent of p. Then, for $x, y \in \mathbb{R}^{N}$ with $x = (x_1, x_2, ..., x_N)$, $y = (y_1, y_2, ..., y_N)$, we have

$$\sum_{i=1,..,N} |x_i y_i| \le ||x||_p ||y||_{p^i}.$$

This is a very important inequality which we will frequently come across in the future; and therefore we will take some time to prove this.

Proof of Holder's inequality. Again if x or y is 0; there is nothing to prove in this inequality. (Refer Slide Time: 07:27)

So, without loss of generality, we can assume that $x \neq 0$, $y \neq 0$. We now set

$$a = \frac{|x_i|^p}{||x||_p}; a = \frac{|y_i|^{p^L}}{||y||_{p^L}}.$$
 And we apply the previous inequality $a^{\frac{1}{p}} b^{\frac{1}{p^L}} \le \frac{a}{p} + \frac{b}{p^L}.$ This gives
$$\delta x_i y_i \vee \frac{\delta}{||x||_p ||y||_{p^L}} \le \frac{1}{p} \frac{|x_i|^p}{||x||_p} + \frac{1}{p^L} \frac{|y_i|^{p^L}}{||y||_{p^L}} \delta.$$

We sum over i=1,2,...N and get

$$\frac{\sum_{i=1,\dots,N} i x_i y_i \vee i}{\|x\|_p \|y\|_{p^i}} \leq \frac{1}{p} \frac{\sum_{i=1,\dots,N} |x_i|^p}{\|x\|_p^p} + \frac{1}{p^i} \frac{\sum_{i=1,2,\dots,N} |y_i|^{p^i}}{\|y\|_{p^i}^p} = \frac{1}{p} + \frac{1}{p^i} = 1i$$

Now we just cross multiply to have the result. So, this proves the inequality known as Holder's inequality.

We can use the Holder's inequality to prove the triangle inequality for $||x||_p$. We go to the next result.

(Refer Slide Time: 10:02)

Pro. (Minkowski's Drag.) المعلية المح = م المحمد - 1all 124 S (121, + 14)

Minkowski's inequality. If $x, y \in \mathbb{R}^N$, then we have the $||x+y||_p \le ||x||_p + ||y||_p$. **Proof of Minkowski's inequality.** Let us write

$$||x+y||_{p}^{p} = \sum_{i=1,\dots,N} |x_{i}+y_{i}|^{p} \leq \sum_{i=1,\dots,N} |x_{i}+y_{i}|^{p-1} (|x_{i}|+|y_{i}|)$$
$$= \sum_{i=1,\dots,N} \mathcal{L} x_{i} \vee |x_{i}+y_{i}|^{p-1} + \sum_{i=1,\dots,N} \mathcal{L} y_{i} \vee |x_{i}+y_{i}|^{p-1}$$

Now, to each of these terms we are going to apply Holder's inequality.

$$\sum_{i=1,...N} \dot{\iota} x_i \vee |x_i + y_i|^{p-1} \le ||x||_p \Big[\sum_{i=1,...N} |x_i + y_i|^{(p-1)p^{\iota}} \Big]^{\frac{1}{p^{\iota}}} = ||x||_p \Big[\sum_{i=1,...N} |x_i + y_i|^p \Big]^{\frac{1}{p^{\iota}}}$$
$$\dot{\iota} ||x||_p ||x + y||^{\frac{p}{p^{\iota}}}.$$

One can do the same thing for the second term. Therefore, we get

$$||x+y||_{p}^{p} \le (||x||_{p}+||y||_{p})||x+y||_{p}^{\frac{p}{p}}$$

Now, if x + y = 0, we have nothing to prove in the Minkowski's inequality. So, if $x + y \neq 0$, then we can divide by $||x + y||^{\frac{p}{p^{i}}}$ and therefore you will get

$$||x+y||_{p}^{p-\frac{p}{p^{\prime}}} \le (||x||_{p}+||y||_{p}).$$

12ty 5 P-P=1

Since
$$p - \frac{p}{p^{\iota}} = 1$$
, we get $||x + y||_p \le ||x||_p + ||y||_p$.

This proves the triangle inequality for $\|.\|_p$ and therefore they are all norms; and we also saw that, since Cauchy sequence means component wise Cauchy (coordinate wise Cauchy). Therefore, by the completeness of R, we also get the completeness of R^N for each of these norms. The case of $\|.\|_{\infty}$ is easier than all of $\|.\|_p$, so I will leave it as an exercise for you to do this. So, we have defined a whole family of norms and on finite dimensional spaces on R^N . You could have done it on C^N as well without any change in any of the proofs, and hence you have a lot of examples. (Refer Slide Time: 17:06)

Now let us come to the question of sequence spaces; again we look at $1 \le p \le \infty$. And we define

$$l_p = \left\{ \left(x_n \right) : \sum_{i=1,\ldots,\infty} \left| x_n \right|^p < \infty \right\} \text{ and } l_\infty = \left[\left(x_n \right) : Su p_n \left| x_n \right| < \infty \right].$$

So, l_{∞} is the set of all bounded sequences, l_p is the set of all sequences that are p summable. Now we will define the norm on these spaces.

For $x = (x_n) \in l_p$, we define $||x||_p = \left(\sum_{n=1,...,\infty} |x_n|^p\right)^{\frac{1}{p}}$ and that is finite and so it is well defined. For $x = (x_n) \in l_\infty$, we define $||x||_\infty = Su p_n \lor x_n \lor i$ which again is well defined because the sequence is bounded.

So, I will leave it you to check (as we did it in the case of finite dimensions) that this satisfies all the properties of a norm. But, before it is a norm, we do not even know that l_p is a vector space. If you take a sequence $(x_n) \in l_p$ and multiply it by a number α , then of course the sequence $(\alpha x_n) \in l_p$ as well. But, if two if you have two sequences $(x_n), (y_n) \in l_p$ then, what is the guarantee that $(x_n+y_n) \in l_p$. This is the question which we should answer first, only then l_p will become a vector space; then only it will make sense for us to talk of a normed linear space.

We will do both together so again all the other properties of norm are obvious; in one stroke we will prove that l_p is a vector space and simultaneously $i \lor . \lor i_p$ satisfies the triangle inequality. Let us do that.

Let us take $x = (x_n), y = (y_n) \in l_p$; so the question is $x + y = (x \wr \iota n + y_n) \in l_p, \iota$ which is the sequence got by component wise addition. Fix k, then by the Minkowski's inequality

$$\left(\sum_{i=1,\dots,k} |x_i + y_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1,\dots,k} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1,\dots,k} |y_i|^p\right)^{\frac{1}{p}} \le ||x||_p + ||y||_p$$

So, this is true for every k and therefore I can let k tend to infinity, the right side is independent of k, and hence we get that $||x+y||_p \le ||x||_p + ||y||_p$, which is finite of course.

This shows that $x+y \in l_p$ and we have also proved the triangle inequality simultaneously. Therefore, all these sequence spaces are normed linear spaces. (Refer Slide Time: 23:22)

Using the same k trick, you can prove the following Holder's inequality:

Holder's inequality: Let $1 and <math>x \in l_p$, $y \in l_{p^i}$. Then, $\sum_{i=1,...,N} |x_i y_i| \le ||x||_p ||y||_{p^i}$.

As I said, do this for any k, you will get it up to k; and then you can write this on left hand side, right hand side. And therefore now you can pass to the limit as k tends to infinity, so you get this; so, you have the Holder's inequality.

I forgot to tell you that if $p=2=p^{i}$, then the Holder's inequality is the same as the famous Cauchy Schwarz inequality, which you might have already come across.

So, finally we have the following theorem.

Theorem. l_p is a Banach space for every $1 \le p \le \infty$.

Proof. For $p = \infty$, I will leave it as an exercise; it is again much easier than the other cases. Let $1 \le p < \infty$. We want to show that every Cauchy sequence in l_p is convergent. Let us take a Cauchy sequence (x_n) in l_p . For every fixed n, I will write its coordinates as x_n^i , $1 \le i < \infty$. Thus, $x_n = (x i i n), 1 \le i < \infty i$. The sequence (x_n) is a Cauchy sequence. What does it mean? For every $\epsilon > 0$ there exists $N \in N$, such that if $n, m \ge N$ then we have $i |x_n - x_m||_p < \epsilon$. In other words,

$$\sum_{i=1,2...\infty} \left| x_n^i - x_m^i \right|^p < \epsilon^p$$

This implies for each *i* we have that $(x \& i n^i) \& i$ is itself Cauchy, and therefore you have that (x_n^i) will converge to some x^i in *R* or *C*, if you are looking at complex sequences; this will be *C*.

(Refer Slide Time: 27:18)

So, we have a candidate now for the limit x which is $x=(x^i)$. So, we want to know if the candidate is eligible that means you have to answer two questions. 1. $x \in l_p$ and 2. $||x_n - x||_p \to 0$. If you answer both these questions affirmatively, then that means every Cauchy sequence is convergent; and therefore l_p would be a Banach space. Now let us do this. First of all, just as real line, every Cauchy sequence is bounded. Therefore, there exists a positive C>0 such that $||x_n||_p \le C$. This means that

$$\sum_{n=1,\ldots,\infty} \left| x_n^i \right|^p \le C^p$$

Therefore, for every *k* we have

$$\sum_{i=1,\ldots,k} \left| x_n^i \right|^p \leq C^p,$$

because this sum is smaller than the previous infinite sum. Now one can allow $n \to \infty$ to get

$$\sum_{i=1,\ldots,k} \left| x^i \right|^p \le C^p$$

Left hand side is independent of k. Therefore, one can let k tend to infinity to get

$$\sum_{i=1,\ldots\infty} \left| x^i \right|^p \leq C^p,$$

which implies that x belongs to l_p . So, we have answered the first question.

Now we need to answer the second question. We already saw that for given $\epsilon > 0$, there exists $n, m \ge N$ such that

$$\sum_{i=1,\ldots\infty} \left| x_n^i - x_m^i \right|^p \le \epsilon^p$$

So, we do the k trick once more. For fixed k, we have

$$\sum_{i=1,\ldots,k} \left| x_n^i - x_m^i \right|^p \le \epsilon^p$$

Now, you keep *n* fix greater than or equal to capital *N*, and *m* tend to infinity. So, you get that

$$\sum_{i=1,\ldots,k} \left| x_n^i - x^i \right|^p \le \epsilon^p$$

This is true for every k and this means that $||x_n - x||_p \le \epsilon$, $\forall n \ge N$. This means $||x_n - x||_p \to 0$. Therefore, we have shown that the candidate is indeed suitable. This completes the proof that l_p is a Banach space. So, with this we will stop sequence spaces; our next example would be function spaces.