Functional Analysis Professor S. Kesavan Department of Mathematics IMSc Examples of Normed Linear Spaces

So, let us recapitulate.

(Refer Slide Time: 00:20)

We have $x \in \mathbb{R}^N$, $x = (x_1, x_2, ..., x_N)$, and we have $||x||_p = \left(\sum_{|i=1,2,...,N}\right)$ $|x_i|^p$ $\begin{array}{c} \hline \end{array}$ $^{1/p}$, 1< *p* < ∞. We want to show that $\|.\|_p$ satisfies the triangle inequality so that this will define a norm. We also saw that if this defines a norm, then R^N with this norm is in fact a complete normed linear space; or in other words a Banach space.

We make the following definition:

If $1 < p < \infty$, then the conjugate exponent p° is defined by $\frac{1}{p}$ $+\frac{1}{4}$ $\frac{1}{p^b}$ =1. For instance if *p*=2, then we

have that $p^i = 2$; if $p=3$, then $p^i = \frac{3}{2}$ 2 and so on.

Remark. $1 < p^i < \infty$.

Now, we have following lemma.

Lemma. Let *a ,b* ∈ *R, a, b≥*0 *,*1<*p*<*∞*. Then *a* 1 *p b* 1 $\frac{1}{p}$ ⁱ \leq <u>a</u> $\frac{a}{p} + \frac{b}{p}$ $\frac{b}{p^i}$. So, if you look at this, if $p=2$, then $p^i=2$; and therefore $\frac{1}{q^p}$ *p b* 1 $\frac{1}{p^i}$ is nothing but the square root of

ab, and the right hand side becomes $\frac{a+b}{2}$. So, this is nothing but the arithmetic mean greater than or equal to the geometric mean. Therefore, the above lemma is a generalization of this particular inequality; so let us try to prove the lemma.

(Refer Slide Time: 03:35)

 R_{i}^{2} bz $0 < k < 1$ $f(k) = k(b-1) - t^{k} + 1$ $f'(k) = k(1-t^{k-1})$ 20 $f(0=0)$ $f^{(4)} > 0$ $96 > 1$
 $t^{k} < 216 - 3 + 1$ $0.26>0$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ Prop: (Holer's Dreq.) Let 1<p=00. It can express for eyeR تھا کہ ان کے اندیون کے انتظام کا انتظام کیا ہے
انہوں کے اندیون کے انتظام کا انتظام کیا ہے
انتظام کے لئے ان کے انتظام کا انتظام کرتا ہے

<u>Proof of lemma.</u> So, let $t \ge 1$ and $0 \le k \le 1$. Then, you look at the function $f(t)=k(t-1)-t^k+1$. Then $f'(t)=k(1-t^{k-1})\geq 0$ (as $t\geq 1$, 0<*k*<1). So, *f* is an increasing function. You also have that *f*(1)=0 and therefore *f*(1)≥0, \forall *t* ≥1. This implies that $t^k \le k(t-1)+1$. So, now if you look at the inequality which we want to prove, you have that, if *a* or *b* is 0 then there is nothing to prove. Thud, we can assume that *a* and *b* are not 0; so in particular let me assume that $a \ge b > 0$. Then I

put $\lambda \frac{a}{b}$ *b* $k = \frac{1}{k}$ *p* and we would get the inequality which we wanted. If *b≥ a*>0, then we put $t = \frac{b}{-}$ *a* $k = \frac{1}{2}$ $\frac{1}{p}$; and then we would get the required inequality. This proves the lemma.

Using this Lemma, we now prove an important result which is called Holder's inequality.

Holder's inequality. Let $1 < p < \infty$, p^l is the conjugate exponent of p. Then, for $x, y \in R^N$ with $x = (x_1, x_2, \ldots, x_N), y = (y_1, y_2, \ldots, y_N),$ we have

$$
\sum_{i=1,..,N} |x_i y_i| \leq ||x||_p ||y||_{p^i}.
$$

This is a very important inequality which we will frequently come across in the future; and therefore we will take some time to prove this.

Proof of Holder's inequality. Again if x or y is 0; there is nothing to prove in this inequality. (Refer Slide Time: 07:27)

So, without loss of generality, we can assume that $x \neq 0$, $y \neq 0$. We now set

$$
a = \frac{|x_i|^p}{\|x\|_p}; a = \frac{|y_i|^{p^i}}{\|y\|_{p^i}}.
$$
 And we apply the previous inequality $a^{\frac{1}{p}} b^{\frac{1}{p^i}} \leq \frac{a}{p} + \frac{b}{p^i}.$ This gives

$$
\frac{\partial}{\partial x_i y_i} \vee \frac{\partial}{\|x\|_p \|y\|_{p^i}} \leq \frac{1}{p} \frac{|x_i|^p}{\|x\|^p_p} + \frac{1}{p^i} \frac{|y_i|^{p^i}}{\|y\|_{p^i}^{p^i}} \frac{\partial}{\partial x_i}.
$$

We sum over *i*=1,2 *,…N* and get

$$
\frac{\sum_{i=1,..N} i x_i y_i \vee i}{\|x\|_p \|y\|_{p^i}} \leq \frac{1}{p} \frac{\sum_{i=1,..,N} |x_i|^p}{\|x\|^p_{p^i}} + \frac{1}{p^i} \frac{\sum_{i=1,2,...,N} |y_i|^{p^i}}{\|y\|_{p^i}^{p^i}} = \frac{1}{p} + \frac{1}{p^i} = 1 \, \delta.
$$

Now we just cross multiply to have the result. So, this proves the inequality known as Holder's inequality.

We can use the Holder's inequality to prove the triangle inequality for $||x||_p$. We go to the next result.

(Refer Slide Time: 10:02)

 $Pr_{\mathcal{F}}(Minkowoh'_{0}Area)$ $R_{y} \in \mathbb{R}^{n}$ اعجالهم تحر المحالهة $\begin{picture}(220,20) \put(0,0){\line(1,0){10}} \put(15,0){\line(1,0){10}} \put(15,0){\line($ $\|x\|_{\infty}^2 = \sum_{\mu=1}^{\infty} |x_{\mu}x_{\mu}^{\mu}|^2 \leq \sum_{\mu=1}^{\infty} |x_{\mu}x_{\mu}|^2$ $\sum_{i=1}^{n}$ المستعمر
المستعمر السياسي المستعمر \leq \geq \approx \approx $\sum_{i=1}^{\infty} |x_{ii}|$ $2x^{1/2}$ ≤ 12 $\tilde{\geq}$ rity $-2a+q+1$ $||2y||_{p} \leq (||2y|_{p}+||y||_{p})(2xy)$

Minkowski's inequality. If x , $y \in R^N$, then we have the $||x + y||_p \le ||x||_p + ||y||_p$. **Proof of Minkowski's inequality.** Let us write

$$
||x+y||_p^p = \sum_{i=1,...N} |x_i + y_i|^p \le \sum_{i=1,...N} |x_i + y_i|^{p-1} (|x_i| + |y_i|)
$$

=
$$
\sum_{i=1,...N} \lambda x_i \sqrt{|x_i + y_i|}^{p-1} + \sum_{i=1,...N} \lambda y_i \sqrt{|x_i + y_i|}^{p-1}
$$

Now, to each of these terms we are going to apply Holder's inequality.

$$
\sum_{i=1,...N} \lambda x_i \sqrt{|x_i + y_i|}^{p-1} \leq ||x||_p \left[\sum_{i=1,...N} |x_i + y_i|^{p-1/p^i} \right]^{\frac{1}{p^i}} = ||x||_p \left[\sum_{i=1,...N} |x_i + y_i|^p \right]^{\frac{1}{p^i}}
$$

$$
\lambda ||x||_p ||x + y||^{\frac{p}{p^i}}.
$$

One can do the same thing for the second term. Therefore, we get

$$
||x+y||_p^p \leq (||x||_p + ||y||_p)||x+y||_p^{\frac{p}{p}}.
$$

Now, if $x + y = 0$, we have nothing to prove in the Minkowski's inequality. So, if $x + y \neq 0$, then we can divide by $||x + y||^{p^2}$ \overline{p} ^{\overline{p}} and therefore you will get

$$
||x+y||_p^{p-\frac{p}{p}} \leq (||x||_p + ||y||_p).
$$

 $||2y||_p \leq (||21|_p + 11)$ $\leq \frac{1}{2}$

Since
$$
p - \frac{p}{p^{\zeta}} = 1
$$
, we get $||x + y||_p \le ||x||_p + ||y||_p$.

This proves the triangle inequality for $\|\cdot\|_p$ and therefore they are all norms; and we also saw that, since Cauchy sequence means component wise Cauchy (coordinate wise Cauchy). Therefore, by the completeness of *R*, we also get the completeness of R^N for each of these norms. The case of $\|\cdot\|_{\infty}$ is easier than all of $\|\cdot\|_{p}$, so I will leave it as an exercise for you to do this. So, we have defined a whole family of norms and on finite dimensional spaces on R^N . You could have done it on C^N as well without any change in any of the proofs, and hence you have a lot of examples. (Refer Slide Time: 17:06)

 $\text{arg} \, \mathbf{b} \leq \text{arg} \, \mathbf{b} + \text{arg} \, \mathbf{b}$ Sequence opences 15p <00 $\text{L}_{p} = \frac{1}{2}(\text{L}_{q}) \left(\sum_{n=1}^{\infty} |a_{n}|^{2} < +\infty \right) \qquad \text{L}_{p} = \frac{1}{2}(\text{L}_{q}) \left(\max_{n=1}^{\infty} |a_{n}|^{2} < +\infty \right)$ $|x|_p = \left(\sum_{\alpha=1}^{\infty} |x_{\alpha}|^p\right)^{\frac{1}{p}}$ $|x|_p^p = \left(\sum_{\alpha=1}^{\infty} |x_{\alpha}|^p\right)^{\frac{1}{p}}$ $x = (x_1)$ $y = (x_1)$ $x_1y = (x_2 - 1)y_1$
 $x_2 = (x_1 + y_1)$ $y_2 = (x_2 - 1)y_1$ $y_2 = (x_1 + y_1)$ $\implies \|\mathbf{x} - \mathbf{y}\|_p \leq \|\mathbf{x}\|_p + \|\mathbf{y}\|_p < +\infty$

Now let us come to the question of sequence spaces; again we look at 1*≤ p*<*∞*,. And we define

$$
l_p = \left\{ (x_n): \sum_{i=1,\dots,\infty} |x_n|^p < \infty \right\} \text{and } l_{\infty} = \left\{ (x_n): \text{Sup}_n | x_n | < \infty \right\}.
$$

So, l_{∞} is the set of all bounded sequences, l_p is the set of all sequences that are p summable. Now we will define the norm on these spaces.

For $x = (x_n) \in l_p$, we define $||x||_p = (\sum_{n=1,..., \infty} |x_n|^p)$ \int 1 *p* and that is finite and so it is well defined. For $x = (x_n) \in I_\infty$, we define $||x||_{\infty} = Su p_n \vee x_n \vee i$ which again is well defined because the sequence is bounded.

So, I will leave it you to check (as we did it in the case of finite dimensions) that this satisfies all the properties of a norm. But, before it is a norm, we do not even know that l_p is a vector space. If you take a sequence $(x_n) \in l_p$ and multiply it by a number α , then of course the sequence $(\alpha x_n) \in l_p$ as well. But, if two if you have two sequences (x_n) , $(y_n) \in l_p$ then, what is the guarantee that $(x_n + y_n) \in l_p$. This is the question which we should answer first, only then l_p will become a vector space; then only it will make sense for us to talk of a normed linear space.

We will do both together so again all the other properties of norm are obvious; in one stroke we will prove that l_p is a vector space and simultaneously $\lambda \vee \lambda_p$ satisfies the triangle inequality. Let us do that.

Let us take $x = (x_n)$, $y = (y_n) \in l_p$; so the question is $x + y = (x \cdot \xi \cdot n + y_n) \in l_p$, ζ which is the sequence got by component wise addition. Fix *k*, then by the Minkowski's inequality

$$
\left(\sum_{i=1,\dots,k} |x_i + y_i|^p\right)^{\frac{1}{p}} \leq \left(\sum_{i=1,\dots,k} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1,\dots,k} |y_i|^p\right)^{\frac{1}{p}} \leq ||x||_p + ||y||_p
$$

So, this is true for every *k* and therefore I can let *k* tend to infinity, the right side is independent of *k*, and hence we get that $||x+y||_p \le ||x||_p + ||y||_p$, which is finite of course.

This shows that $x + y \in I_p$ and we have also proved the triangle inequality simultaneously. Therefore, all these sequence spaces are normed linear spaces.

(Refer Slide Time: 23:22)

Using the same *k* trick, you can prove the following Holder's inequality:

Holder's inequality: Let $1 < p < \infty$ and $x \in l_p$, $y \in l_{p^i}$. Then, $\sum_{i=1,...N} |x_i y_i| \le ||x||_p ||y||_{p^i}$.

As I said, do this for any *k*, you will get it up to *k*; and then you can write this on left hand side, right hand side. And therefore now you can pass to the limit as *k*tends to infinity, so you get this; so, you have the Holder's inequality.

I forgot to tell you that if $p=2=p^{\lambda}$, then the Holder's inequality is the same as the famous Cauchy Schwarz inequality, which you might have already come across.

So, finally we have the following theorem.

Theorem. *l_p* is a Banach space for every $1 \le p \le \infty$.

Proof. For $p = \infty$, I will leave it as an exercise; it is again much easier than the other cases. Let 1*≤ p*<*∞*. We want to show that every Cauchy sequence in *l ^p* is convergent. Let us take a Cauchy sequence (x_n) in l_p . For every fixed *n*, I will write its coordinates as x_n^i , $1 \le i < \infty$. Thus, $x_n = (x \dot{\iota} \dot{\iota} n^i)$, 1 ≤*i* < ∞ $\dot{\iota}$. The sequence (x_n) is a Cauchy sequence. What does it mean? For every ϵ >0 there exists *N* ∈ *N*, such that if *n*,*m* ≥ *N* then we have $\frac{\epsilon}{x}$ |*x_n*−*x_m*||_{*p*} ≤ ϵ . In other words,

$$
\sum_{i=1,2...}\left|x_n^i-x_m^i\right|^p<\epsilon^p
$$

This implies for each *i* we have that $(x \lambda \delta n)$ *i* is itself Cauchy, and therefore you have that (x_n) will converge to some x^i in *R* or *C*, if you are looking at complex sequences; this will be *C*.

(Refer Slide Time: 27:18)

So, we have a candidate now for the limit *x* which is $x = (x^i)$. So, we want to know if the candidate is eligible that means you have to answer two questions. 1. $x \in l_p$ and 2. $||x_n - x||_p \to 0$. If you answer both these questions affirmatively, then that means every Cauchy sequence is convergent; and therefore l_p would be a Banach space. Now let us do this. First of all, just as real line, every Cauchy sequence is bounded. Therefore, there exists a positive *C*>0 such that $||x_n||_p \leq C$. This means that

$$
\sum_{i=1,\dots\infty} |x_n^i|^p \le C^p
$$

Therefore, for every *k* we have

$$
\sum_{i=1,\ldots,k} |x_n^i|^p \leq C^p,
$$

because this sum is smaller than the previous infinite sum. Now one can allow $n \rightarrow \infty$ to get

$$
\sum_{i=1,\ldots,k} |x^i|^p \leq C^p.
$$

Left hand side is independent of *k*. Therefore, one can let k tend to infinity to get

$$
\sum_{i=1,\ldots,\infty} |x^i|^p \leq C^p,
$$

which implies that x belongs to l_p . So, we have answered the first question.

Now we need to answer the second question. We already saw that for given $\epsilon > 0$, there exists *n ,m≥ N* such that

$$
\sum_{i=1,\dots,\infty} |x_n^i - x_m^i|^p \le \epsilon^p
$$

So, we do the *k* trick once more. For fixed *k ,* we have

$$
\sum_{i=1,\dots,k} |x_n^i - x_m^i|^p \le \epsilon^p
$$

Now, you keep *n* fix greater than or equal to capital *N*, and *m* tend to infinity. So, you get that

$$
\sum_{i=1,\dots,k} |x_n^i - x^i|^p \le \epsilon^p
$$

This is true for every *k* and this means that $||x_n - x||_p \le \epsilon$, $\forall n \ge N$. This means $||x_n - x||_p \to 0$. Therefore, we have shown that the candidate is indeed suitable. This completes the proof that l_p is a Banach space. So, with this we will stop sequence spaces; our next example would be function spaces.