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Today, we will discuss about annihilators. This will play an important role, when we study the

relationship between the kernel of an operator and the range, the kernel and range of the adjoint

of an operator and so on.

Let be a Banach space and Then the annihilator of is defined as𝑉 𝑊⊆𝑉. 𝑊

Similarly, if you have , then we can define the𝑊⊥ = 𝑓∈𝑉*:  𝑓 𝑥( ) = 0,  ∀𝑥∈𝑊{ } ⊆ 𝑉*. 𝑍⊆𝑉*

annihilator is a closed subspace of and is a closed𝑍⊥ = 𝑥∈𝑉: 𝑓 𝑥( ),  ∀𝑓∈𝑍{ }⊆𝑉. 𝑊⊥ 𝑉* 𝑍⊥

subspace of and we have already seen the first one in one of the exercises earlier, the second𝑉

one is absolutely the same.

because if then for every element in , and therefore, .𝑊⊥⊥⊇𝑊 𝑥∈𝑊, 𝑓∈𝑊⊥ 𝑓 𝑥( ) = 0 𝑥∈𝑊⊥⊥

Since is a closed subspace so𝑊⊥⊥ 𝑊⊥⊥ ⊇ 𝑊.

Now, what about the equality? Yes, we do have. Suppose we have then Hahn Banach𝑥∈𝑊⊥⊥∖𝑊

theorem tells you there exists a such that but . Thus, . Since𝑓∈𝑉* 𝑓 𝑥( )≠0 𝑓 |
𝑊

= 0 𝑓∈𝑊⊥ 𝑥∈𝑊⊥⊥

this means that , which is a contradiction. Therefore, we have that .𝑓 𝑥( ) = 0 𝑊⊥⊥ = 𝑊



Now, in the same way, if you take . But now you try to imitate the same argument, you𝑍⊥⊥∖𝑍

will fail because now you have to apply Hahn Banach something in , and that does not come𝑉**

in anywhere in our calculations here. So, we only can say this about equality if is reflexive𝑉

because is reflexive, is nothing but and therefore, you can repeat the previous argument𝑉 𝑉** 𝑉

and therefore, you have .𝑍⊥⊥ = 𝑍

Then finally, if , then This is really obvious. So, now we will go through a𝐺⊆𝐻⊆𝑉 𝐻⊥ ⊆ 𝐺⊥.

proposition.
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Proposition. Let be closed subspaces of which is Banach. Then𝐺, 𝐻 𝑉 𝐺∩𝐻 = 𝐺⊥ + 𝐻⊥( )
⊥

and 𝐺⊥ ∩ 𝐻⊥ = 𝐺 + 𝐻( )⊥.

Proof. The second one is almost obvious. If something kills both and , it will kill all of𝐺 𝐻

. So, it will belong to . Conversely, if something is in , so, it will kill𝐺 + 𝐻 𝐺 + 𝐻( )⊥ 𝐺 + 𝐻( )⊥

all of . Hence, it kills all of and it will kill all of . So, it is in So, this one is𝐺 + 𝐻 𝐺 𝐻 𝐺⊥ ∩ 𝐻⊥.

obvious. So, now, let us prove the first one.

We already have that . Why? Because, if you have something in𝐺∩𝐻( ) ⊆ 𝐺⊥ + 𝐻⊥( )
⊥

𝐺∩𝐻,

then it is killed by everything in as well as by everything in . So, it is killed by everything𝐺⊥ 𝐻⊥

in i.e.,  it belongs to . For the converse, we have that and𝐺⊥ + 𝐻⊥ 𝐺⊥ + 𝐻⊥( )
⊥

𝐺⊥ ⊆ 𝐺⊥ + 𝐻⊥

. Similarly, . By the same reason𝐺⊥ + 𝐻⊥( )
⊥

⊆ 𝐺⊥⊥ = 𝐺 = 𝐺 𝐻⊥ ⊆ 𝐺⊥ + 𝐻⊥

. Therefore, we have the reverse inclusion.𝐺⊥ + 𝐻⊥( )
⊥

⊆ 𝐻⊥⊥ = 𝐻 = 𝐻

Now, you combine these two to get the following corollary.

Corollary. and𝐺∩𝐻( )⊥ ⊇ 𝐺⊥ + 𝐻⊥ 𝐺⊥ ∩ 𝐻⊥( )
⊥

= 𝐺 + 𝐻.    
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Proposition. Let be Banach and be closed subspaces such that is also closed.𝑉 𝐺, 𝐻 𝐺 + 𝐻
Then there exists a constant such that for every there exists , with𝐶 > 0 𝑥∈𝐺 + 𝐻 𝑎∈𝐺 𝑏∈𝐻

and and𝑎| || |≤𝐶| 𝑥| || 𝑏| || |≤𝐶| 𝑥| || 𝑥 = 𝑎 + 𝑏.
So, what does this mean? If the sum of two close subspaces is closed, then you can decompose

any vector into a sum of a vector in and a vector in but in a continuous fashion. So, there are𝐺 𝐻

many decompositions possible. But you will be able to select one in a fair manner that is

uniformly continuous.

Proof. You consider the spaces G with the norm . Both are close𝐺×𝐻 𝑥, 𝑦| || |
𝐺×𝐻

= 𝑥| || | + | 𝑦| ||

subspaces of a Banach space, so, each one is a Banach space in its own right. So, the product is a

Banach space with this norm. Now, is also closed. So, it is also a Banach space. So, we𝐺 + 𝐻

have two complete Banach spaces and we are going to take a mapping from into .𝐺×𝐻 𝐺 + 𝐻

We are going to take , which is linear, continuous and above all it is onto. Then, by𝑥, 𝑦( )↦𝑥 + 𝑦

open mapping theorem, there exists a such that , implies𝐶 > 0 𝑧∈𝐺 + 𝐻 𝑧| || | < 𝐶 ∃𝑥∈𝐺,  𝑦∈𝐻

such that and Now, if is arbitrary, then𝑧 = 𝑥 + 𝑦 𝑥 + 𝑦| || | < 1. 𝑧∈𝐺 + 𝐻 𝐶
2

𝑧
𝑧| || | = 𝑥' + 𝑦'

and 𝑥' + 𝑦'| || | < 1,  𝑥'∈𝐺, 𝑦'∈𝐻.
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Thus, where Therefore, and𝑧 = 𝑥 + 𝑦, 𝑥 = 2| 𝑧| ||
𝐶 𝑥'∈𝐺,  𝑦 = 2| 𝑧| ||

𝐶 𝑦'∈𝐻. 𝑥| || | ≤ 2
𝐶 | 𝑧| ||

𝑦| || | ≤ 2
𝐶 𝑧| || |.

So, now, let us see a corollary to this thing.
Corollary. Let and . Then you have .𝐺∩𝐻 = {0} 𝐺 + 𝐻 = 𝑉 𝑉 = 𝐺⨁𝐻

equals direct sum of , but in this case the decomposition is unique there is no several𝑉 𝐺, 𝐻
decompositions possible. By the previous theorem,  if you have that then has a unique𝑧∈𝑉 𝑧
decomposition , and you will have and𝑧 = 𝑥 + 𝑦 𝑥∈𝐺,  𝑦∈𝐻 𝑥| || |≤𝐶 𝑧| || |,  𝑦| || |≤𝐶| 𝑧| ||

are precisely the projections of onto and respectively. If you have a𝑧↦𝑥,  𝑧↦𝑦 𝑉 𝐺 𝐻
decomposition, if is whole of and then the projection is continuous. This is𝐺 + 𝐻 𝑉 𝐺∩𝐻 = 0{ }
a consequence of the open mapping theorem.
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Theorem Let and be two closed subspaces of a Banach space . Then the following are𝐺 𝐻 𝑉

equivalent.

1: is closed in .𝐺 + 𝐻 𝑉

2: is closed in .𝐺⊥ + 𝐻⊥ 𝑉*

3: 𝐺 + 𝐻 = 𝐺⊥ + 𝐻⊥( )
⊥

4: .𝐺⊥ + 𝐻⊥ = 𝐺∩𝐻( )⊥



Now, we already know that So, if is closed, then we have 1𝐺⊥ + 𝐻⊥( )
⊥

= 𝐺 + 𝐻 . 𝐺 + 𝐻 ⟹

3. And if you have 3, then you have and therefore, is closed. So, 1𝐺 + 𝐻 = 𝐺 + 𝐻 𝐺 + 𝐻 ⟺

3.

Also 4 2 is obvious. So, to complete the proof we need to show that 1 4 and 2 1. So,⟹ ⟹ ⟹

let us prove 1 4.⟹

(Refer Slide Time: 21:29)

So, what does 1 say? is closed. We already proved that𝐺 + 𝐻

To show Let . Define a𝐺 + 𝐻( )⊥ ⊇ 𝐺⊥ + 𝐻⊥ ⊇ 𝐺⊥ + 𝐻⊥. (𝐺∩𝐻)⊥ ⊆ 𝐺⊥ + 𝐻⊥. 𝑓∈(𝐺∩𝐻)⊥

linear functional on as follows:𝐺 + 𝐻

If , then Define𝑥∈𝐺 + 𝐻 𝑥 = 𝑎 + 𝑏; 𝑎∈𝐺, 𝑏∈𝐻. ϕ 𝑥( ) = 𝑓 𝑎( ).

We have to first check that this is well defined. If where and𝑥 = 𝑎 + 𝑏 = 𝑎' + 𝑏' 𝑎, 𝑎'∈𝐺

then you have that . Hence . But and𝑏, 𝑏'∈𝐻 𝑎 − 𝑎' = 𝑏 − 𝑏' 𝑎 − 𝑎', 𝑏 − 𝑏'∈𝐺∩𝐻 𝑓∈(𝐺∩𝐻)⊥

therefore, which implies𝑓 𝑎 − 𝑎'( ) = 𝑓 𝑏 − 𝑏'( ) = 0 𝑓 𝑎( ) = 𝑓 𝑎'( ).
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Also there exists a and we can choose such that𝐶 > 0 𝑎, 𝑏 𝑎| || | ≤ 𝐶 𝑥| || |,   𝑏| || |≤𝐶 𝑥| || | (𝑏𝑦 

previous propositions which we already proved based on the open mapping theorem). Therefore,

, which implies that is a continuous linear functionalϕ 𝑥( )| | = 𝑓 𝑎( )| | ≤ 𝑓| || | 𝑎| || |≤𝐶 𝑓| || | 𝑥| || | ϕ

on . Therefore, by Hahn Banach theorem, there exists an extension on such that𝐺 + 𝐻 ϕ
~

𝑉

on the . Therefore,  on and on . Now, notice thatϕ
~

= ϕ 𝐺 + 𝐻 ϕ
~

= ϕ 𝐺 ϕ
~

= ϕ = 0 𝐻

and . Therefore, we can write So, that𝑓 − ϕ
~

∈ 𝐺⊥ ϕ
~

∈ 𝐻⊥ 𝑓 = 𝑓 − ϕ
~( ) + ϕ

~
∈ 𝐺⊥ + 𝐻⊥.

completes the proof.

The last inclusion I am not going to do namely 2 1. This is a bit long and very technical. And⟹

there were really no new ideas but someone can try and prove. So, it is best if you read it

yourself in the book. So, this theorem is more or less proved except for this 2 implies 1, which I

am going to omit the proof for lack of time.


