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We will now look at the next two important applications of Baire theorem. These are the open

mapping theorem and the closed graph theorem. 

Before we start let us recall some notation. If you have a vector space and you have two sets

A ,B then  A+B={x+ y : x∈ A , y∈B } is  nothing but  the algebraic  sum. Similarly  if  λ is  any

scalar then λA= {λx : x∈ A } . 

If you take  2 A is a set of all elements of the form 2 x and 2 x=x+x and so, it is contained in

A+A.  So,  2 A⊆ A+A . But  the  converse  need  not  be  true.  For  instance,  if  you  take  A=

[−2 ,−1 ]∪[1,2 ]. Then 0 will be in A+A, but it is not in A. Because 0 is not in A, so it is not in

2 A also.  But  if  A is  convex and if  you have  x , y∈ A,  then  x+ y=2( x+ y2 )∈2 A . A being

convex 
x+ y
2

∈ A, so this belongs to x+ y∈2A . Thus, A+A=2 A .

So, these are some notations which we will need in the proof of the open mapping theore. We

will first prove a proposition.



Proposition.  Let V ,W  be two Banach spaces and T ∈ L (V ,W )which onto. Then there exists a

C>0 such that BW (0 ;C )⊆T (BV (0 ;1 )). 

What does this say? This says that if you take a neighborhood of the origin and  T  is an onto

continuous linear map, then the image is also a neighborhood of the origin. From this we will be

able to show the T  maps open sets into open sets and that is called open mapping theorem. 
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Proof.  Step 1.  Claim:There exists C>0 such that BW (0 ;2C )⊆T (BV (0 ;1 )). So, it is a slightly

bigger set.  Let  us set  X n=nT (BV (0 ;1 )). Then each  X n is closed.  Also  T  is onto.  So, every

element in W  is a image of something in V  and you can scale it and therefore, you can show that

in fact,  W=∪n=1,2,…∞ X n. So, the Baire’s theorem implies that not all the  X n can be nowhere



dense  (as  W  is  complete).  So,  there  exists  an  n such  that  ∫ (X n )≠ ϕ.  This  implies  that

∫ (T (BV (0 ;1 )) )≠ ϕ.  So,  there  exists  y0∈W  and  a  C>0 such  that  BW ( y0 ;4C )⊆T (BV (0 ;1 )).

Now,  in  particular,  take  y0∈T (BV (0 ;1 )).  Then  − y0∈T (BV (0 ;1 )).  For  z∈BW ( y 0;4C ) ,

y0+z∈T (BV (0 ;1 )) . Now,  y0∈T (BV (0 ;1 )) implies  − y0∈T (BV (0 ;1 )). Then,

z=( y0+ z )− y0∈T (BV (0 ;1 ) )+T (BV (0 ;1 ) )=2T (BV (0 ;1 )).  So,  BW ( y0 ;4C )⊆2T (BV (0 ;1 ) ).

Therefore, if you scale it by 2, then you get whatever the claim. 
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Step 2.   Now we are going to  use the  fact  that  V  is  complete.  We are going to  show that

BW (0 ;C )⊆T (BV (0 ;1 ) ). So, the closure by halfing the radius we are able to remove the closure.



Let y ∈BW (0 ;C ). To show that ∃ x∈V ,||x||V<1 such that  T x= y . Let ϵ>0 be arbitrary. Then,

since y ∈BW (0 ;C ), 2 y∈BW (0 ;2C )⊆T (BV (0 ;1 )). 

So, there exists a  z such that  ||z||<1 and  ||2 y−T (z )||<ϵ . From this we say that there exists  z1

such that ||z1||<
1
2

  and ||2 y−2T ( z1)||<C . This implies that ||y−T (z1 )||<
C
2
.  So 4¿ So, from this

you have that there exists z2∈V  and ||z2||<
1
4

 and ||y−T (z1 )−T ( z2)||<
C
4
. Therefore, eventually

by  induction,  there  exists  zn∈V  with  ||zn||<
1
2n

 and  ||y−T (z1+ z2+…+ zn )||<
C
2n
. Look  at  the

sequence (z1+z2+…+ zn).What is the difference of two consecutive terms? The difference of two

consecutive terms is zn+1 and its norm is less than 
1

2n
 and ∑

n=1,2…∞

1

2n
<∞. Therefore, the sequence

(z1+z2+…+ zn) is Cauchy. Hence, the sequence  (z1+z2+…+ zn) converges to some  x and then

y=Tx . Further, ||x||≤1. So, that proves the proposition completely. 

Now we will make a remark.

Remark. Because everything is going to be scaled, if  r>0, then there exists an  s>0 such that

BW (0 ; s )⊆T (BV (0 ; r )). This is obvious. We did it for 1, then it is just a question of scaling it.
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Now we can prove the open mapping theorem. 

Theorem. (Open mapping). Let V ,W  be complete and T :V ↦W  be onto, continuous. Then T  is

an open map, that means, it maps open sets into open sets. 

Proof. Let  G be  non-empty  open  in  V .  To  show  T (G) is  open  in  W .  Let  us  assume  that

y ∈T (G ) . This  means  that  there  exists  an  x∈G such  that  T (x )= y.  G is  open  implies

x+BV (0 ; r )⊆G. Therefore, y+T (BV (0 ; r ) )⊆T (G). But there exists BW (0 ; s )⊆T (BV (0 ; r )) ( that

is what we remarked) and therefore, this implies that  y+BW (0 ; s )⊆T (G ) and this implies that

T (G) is open and this proves the open map theorem. 

There are  several applications  of this  theorem and some of them are really  very interesting.

Corollary. Let  V ,Wbe  Banach  and  T :V ↦W  be  a  continuous  bijection.  Then  T  is  an

isomorphism. 

Proof. T  is an open map implies that T−1 inverse is continuous. Therefore, it is an isomorphism.

So, this is just that. Now, this leads to another very interesting corollary.
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Corollary. Let  V  be a vector space complete with respect to two norms,  ¿∨.∨|1 and  ¿∨.∨|2 .

Assume that there exists C>0 C such that ||x||1≤C||x||2 ,∀ x∈V . Then the norms are equivalent. 

Proof. You take  the  identity  map  I : (V ,∨¿ .∨|2)↦(V ,∨¿ .∨|1).  So,  this  is  an  onto map and

further it is also continuous because of the given condition ||x||1≤C||x||2 ,∀ x∈V . This is also 1

to 1 map. So, identity is an isomorphism and therefore, the norms are equivalent. 

Let us see an example of an application of this very nice result. 

Example.  Let us take C [0,1], then you have two norms: (a) ||.||∞ and (b) ||f||1=∫
[0,1]

|f (t )|dt . You

have that  ||f||1≤||f||∞ and we also saw that these two norms are not equivalent. We know that

these are not equivalent. We already know that  C [0,1], with ||.||∞ is complete. Thus, if  C [0,1],

with  ||.||1 is also complete, then by the previous corollary the two norms must be equivalent,

which is a contradiction. Therefore, C [0,1] with ||.||1 is not complete.  
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We are ready to move to the next theorem, namely, the close graph theorem.

Let us first define the graph. Let T :V ↦W  be a map. We define G (T )={ (x ,Tx ) : x∈V } is called

the graph of T . So, this is some subspace of V ×W .

 So, if T  is linear and continuous, then G (T ) is closed. Why? Let (xn ,T (xn ) )→(x , y) in V ×W .

Then xn→x, T ( xn )→ y=T ( x ) (as T  is continuous). Therefore, ( x , y )=(x ,T ( x ))∈G (T ). So, this

implies that G (T ) is closed. 

The beautiful thing is the converse is also true. So, this is the theorem. 

Theorem. (Closed graph theorem).  Let V ,W  be two Banach spaces and T :V ↦W  linear. Then,

G (T ) is closed implies T  is continuous. 

We have seen many ways in which you can prove the continuity of an operator. This is now a

new one. It says we have a linear map between Banach spaces, then, if the graph is closed, then

the map has to be continuous. So, this is one more nice result. So, let us prove this theorem. 

(Refer Slide Time: 26:07)



Proof. Let us define  ||x||1=||x||V+||T (x )||W . This is trivially a norm that you can check without

any problem. Let us take a Cauchy sequence (xn) with respect to ||.||1. This implies (xn) Cauchy

with respect to V  and T (xn) is Cauchy in W .
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We have  both  the  spaces  are  complete  and  therefore  you  have  xn→x for  some  x∈V  and

T ( xn )→ y for some y ∈W . Now, you know that G (T ) is closed. This implies y=T (X ). So, you

have that V  with ||.||1  is complete. V  with ||.||V   is also complete. Now, you have two norms on V

and V  is complete with respect to both the norms and you also know that ||.||V ≤||.||1 . Therefore,

these two norms are equivalent. Thus, ||.||1≤C||.||V . So, in particular,  ||T (x)||W ≤C||x||1 i.e.,  T  is

continuous and therefore, we are through. So, we this completes the proof. 


