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Application to Fourier series

We will now see a nice application of the uniform bondedness theorem. 
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We are going to see an application to Fourier series. 

Let f : [−π , π ]↦R be an integrable function. We write its formal Fourier series as

f (t ) ∑
−∞≤n≤∞

f̂ (n ) e∫ ¿, ¿

                                                       f̂ (n )=
1
2π

∫
[−π ,π ]

f (s )e−insds are the Fourier coefficient.

The question which we are going to ask is, to what extent does this Fourier series represent

the function itself.  In particular,  if  f  is continuous,  2 π-periodic function, will  the Fourier

series converge to f (t ) at every point t ∈ [−π , π ]? Unfortunately, the answer is no and it was

a big controversy in the later half of the 18th century, for nearly 70 years, till in the beginning

of the 19th century Dirichlet established in 1829, the first sufficient condition for the series to

converge to the value of the function or whatever it converges to and then it was strengthened

by Jordan and in fact, the study of Fourier series justification of its convergence and all this,

led to a lot of mathematical development and like making precise what is the notion of a

function? What is Cantor's theory of infinite series, the theories of integration of Riemann

and Lebesgue and the theories of summability of series. All this lot led to a lot of research, a

lot of mathematics got developed in just trying to understand what this means. 



In this talk, we will now use the Banach-Steinhauss theorem to show that there exists a very

large  class  of  continuous,  2 π-periodic  functions,  where  the  Fourier  series  will  fail  to

converge and the set of points where it converges is also very big. 

So, that means the situation is quite bad and therefore, one has to see in what sense we want

to use the Fourier series or not. So, what do we do to do, to study the Fourier series. So, we

have to study the convergence of the partial sums of the Fourier series which is 

                          Sm ( f ) (t )= ∑
−m≤n≤m

f̂ (n ) e∫ ¿
=
1
2 π

∫
[−π , π]

f ( s ) Dm (t−s )ds ,¿

where  Dm (t )= ∑
−m≤n≤m

e∫
¿
¿ is  called  the Dirichlet  Kernel.  The Dirichlet  Kernel  is  an even

function. 
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This is just calculation and I am not going to do that. 

Dm (t )=

sin (m+
t
2
)

sin t
2

  if t ≠2kπ , k is aninteger and Dm (t )=2m+1 if t=2kπ.

Proposition. lim
n→∞

∫
[−π ,π ]

¿Dn ( t )∨¿dt=∞.¿ 

Proof. We have that |sin (t )|≤∨t∨¿. So

∫
[−π ,π ]

|Dn ( t )|dt ≥ 4 ∫
[0, π]

¿ sin (n+ t
2 )∨ ¿

¿ t∨¿dt
=4∫

¿¿

¿¿¿

                                              ≥ 4 ∑
k=1,2,…n

∫
[ (k−1 )π , kπ]

¿sin (t )∨¿
t
dt ¿ 

                                              ≥ 4 ∑
k=1,2,…n

∫
[ (k−1 )π ,kπ]

¿ sin (t )∨ ¿
kπ

dt=
8
π

∑
k=1,2 ,…n

1
k
¿. 

Now ∑
k=1,2,…∞

1
k

 is a divergent series and therefore this partial sum should go to infinity. Thus,

lim
n→∞

∫
[−π ,π ]

¿Dn ( t )∨¿dt=∞.¿. So, that proves this proposition. 
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Proposition. V=C per [−π , π ]= Continuous 2 π-periodic functions. This is a vector space and

then you are going to put the usual norm. Norm here is the sup-norm as usual and that I am

going to call it as norm infinity.

Now,  define  ϕn :V ↦R.  So,  ϕn ( f )=Sn ( f )(0).  Then,  ϕn∈V ¿and  we  can  actually  compute

||ϕn||=
1
2π

∫
[−π , π ]

|Dn (t )|dt . That is why we calculated that integral a little earlier, because this

is in fact the norm. 

Proof. On one hand, we have 

                                        ϕn ( f )=
1
2 π

∫
[−π , π ]

f ( t ) Dn (t )dt . 

|ϕn ( f )|≤||f||∞
1
2π

∫
[−π , π]

¿Dn ( t )∨dt.  ||ϕn||≤
1
2 π

∫
[−π ,π ]

|Dn ( t )|dt



Now we want to show that it is actually attained. So, this supremum will have to be attained.

So, we have to find a function or sequence of functions for which it will actually go to this

optimal value. 
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 Let En={t∈ [−π , π ] :Dn (t )≥0}. So, now, you define

                                                         f m (t )=
1−mdist (t , En)

1+mdist (t , En)

So, ||f m||∞≤1 and continuous. Now, I claimed that f m∈C per( [−π , π ]). The distance function is

a continuous function and denominator  does not vanish and therefore,  f m is a continuous

function.

Why is this 2 π-periodic? That means, you must show that at π and – π , they take the same

value. The set  En itself is symmetric about the origin as  Dn is even function. So,  En is a

symmetric set about 0 and therefore, you have f m is in fact a periodic function. 



Now, what does f m(t ) if t belongs to you En? If t ∈En, dist ( t , En)=0 and therefore, f m (t )=1

and if t ∈En
c, then I can divide through it by m and let m tend to infinity, so f m (t )→−1. So,

point wise  f m(t ) goes to the function, which is 1 on  En and  −1 on  En
c and the integral is

dominated by  Dn which is a integrable function. Therefore, by the dominated convergence

theorem,  ϕn ( f m )→
1
2 π

∫
[−π ,π ]

|Dn ( t )|dt . Therefore,  you  have  a  sequence  which  goes  to  the

supremum and therefore, this is in fact the norm. This completes the proof. 

Now let us apply this to the space. Take the space  V=C per([−π , π ]) V equals C periodic,

Then what do you know? we have that ||ϕn||→∞. Therefore, there exists a dense Gδ set in V

such that for every f , we have that Sn ( f ) (0 )→∞ S n of f at 0 diverges. That is Fourier series

diverges at 0. So, there is a huge set of continuous functions which are 2 π-periodic for whom

the Fourier series is divergent at the origin.

(Refer Slide Time: 21:09)

Now, we can do the same thing for any point x∈ [−π , π ], 0 is not special. So, we now call

Ex=denseGδ set of functions∈C per ([−π , π ]) such that the Fourier series diverges at x. 

So, now you take {x i} a countable set of points in [−π , π ] and you write E=∩i=1,2 ,…n Exi
⊆V

and by Baire’s theorem, E is also dense Gδ set. Now, for every f ∈E, the Fourier series will

diverge at x i for all i. You define S¿
( f , x )=

¿n¿ Sn ( f ) ( x )∨¿¿. We have that {x :S¿
( f , x )=∞ } is

a Gδ set in [−π , π ] for each f . Now, choose {x i} dense in [−π , π ]. So, in fact you can just take

the rationals for instance. We have the following proposition. 
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Proposition.  Let  E⊆V  is dense  Gδ set in  V  such that for all  f ∈E, the set  Q f ⊆ [−π , π ]

where the Fourier series diverges is a dense Gδ set in [−π , π ]. 

So, we saw a corollary of Baire’s theorem, which says if you do not have isolated points, (in

C per [−π , π ] you  do  not  have  isolated  points  in   [−π , π ]),  then  dense  Gδ set  has  to  be

uncountable. 

Therefore,  there exists  unaccountably many  2 π-periodic functions,  for each of them the

Fourier  series  will  diverge  at  an  uncountable  number  of  points.  So,  the  Fourier  series

convergence point-wise is not at all something which you can take for granted. So, that is

everything comes from Baire’s theorem and application of the Banach Steinhaus theorem and

so this is a new application. So, next we will look at some other theorems which work in

Banach spaces.


