Functional Analysis
Professor S. Kesavan
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Lecture 16
Baire’s Theorem and Applications
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We will now start a new topic. This I will call Baire’s theorem and applications.

There are four grand theorems of functional analysis. The first one is the Hahn—Banach theorem
which we have already seen and three others follow from Baire’s theorem.

Let us first recall what is Baire’s theorem.

Theorem. Let (X,d) be a complete metric space and you have a collection of open and dense
sets (V| then n,_,, .V, is also dense.

So, in the complete metric space, if you have a countable family of open dense sets then the
intersection is also dense (countable intersection of open sets is not an open set in general). We
know that only finite intersections of open sets are open. But these are what are called Gs-sets (a
G5 set is a countable intersection of open sets). So, if you have a countable collection of open

dense sets then the intersection is a dense Gg.

Proof. Let W# ¢ be open in X. We need to show that Wn(n _,, .V,

#¢. Then, every open set
will meet the intersection and therefore, the intersection is automatically dense. First, since V; is

dense, WNnV,#¢ and also open. So there exists x,EWnV, and 0<r;<1 such that

B(x;r,)CWnV,.



So, now we are going to use the induction hypothesis. Assume that we have found

(Xi)i:1,2,...n—1’(ri)i:1,2,...n—lsuCh that B(x;r,)CV,nB[x,_;r,_,|AO<r, <% i=1. So, these are the

two conditions in the induction hypothesis.
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Now we take (V,) as dense and since B(x, ,;r, ,) is open, therefore, there exists

1
15T ). Again the set V, nB(x, ,;r, ) is open and therefore, there exists r, <=,

x, EV_ nB(x
n

such that B(x,;r,)CV, nB(x, ,;r, ;). So, what have we constructed? We have constructed a

n’'n

sequence (X;) such that, if you take any i>n, j>n, then you have x,, x, EB( x,;1,) and therefore,

d (xi,xj) £2rn<%. Therefore, (x,;) Cauchy. X is complete implies Xx; - XE X. So, we have found a

candidate. Now, for any i>n, you have XiEB(Xn,rn) and therefore, you have x; - x. So,

xE€B(x,,r,)CV,. So, XEN,_;,

n>’ n

. V.. Also, XEB(x,,r,) and this implies it x& W . Therefore,

ye..00

we have found a common element in W and the intersection. This completes the proof.

Remark. The significance of this result is not really the denseness of N,_;, .V, The

P

significance of this result is that intersection N,-;, . V,is non-empty. That is how it is often
used.
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We can state this theorem in a different way. If V, is open dense implies V| is closed and
nowhere dense and therefore, the theorem can also be stated as follows.

Barie’s theorem. A complete metric space is not the countable union of nowhere dense sets.
The countable union of nowhere dense sets is usually called a first category and everything
which is not first category is called second category and Baire’s theorem says that complete
metric space is therefore a set of second category and that is why it is called the sometimes the
Baire’s category theorem.

Corollary. In a complete metric space, the countable intersection of dense G; sets is a dense G
set. Now, what does this mean? So, G4 set is the countable intersection of open sets. Let
(Wn)be dense G4 sets. So, W,=N,_15 oV, m V.. are open. Since W, are dense, V, , are also
dense. SO N2 W, =Npoio. 0 Nm=12.0 Vi mand that is again a countable intersection of open
dense sets and therefore, it is also dense and since it is a countable intersection of open sets, it is
also a G4. Therefore, in a complete metric space, the countable intersection of dense G; sets is a
dense G set.

Corollary 2. In a complete metric space without isolated points, countable dense set is not a G
set.

So, when I say in such a metric space without isolated points, when I say dense G, that means,
the set is automatically uncountable. So, that is how this Corollary is going to be used. Namely,
if you have a complete metric spaces out isolated points and you have a dense Gg, then it is

automatically uncountable.
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Proof. Let us take E={x,:k=1,2,...0] a countable dense set. If E is a G4, then E can be

witness as E=n,_,, V,;V,open and then obviously, V, is also dense (because it is bigger

than the dense sets). Now, if you take W,=V,\U,_, (X}

yeen

is also dense. Then

Np=12...« W,=¢ which is a contradiction to Baire’s theorem and therefore, this is not possible.

So, if you do not have isolated points, then dense G5 will automatically be a uncountable.

The Baire’s category theorem has several applications. In this section, we will see its application

to Banach spaces.
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Anyway, so now, we will do some applications of Baire’s category theorem in function analysis.

So, the first application of Baire’s category theorem is the principle of uniform boundedness.



Theorem. (Banach-Steinhaus theorem). Let V be Banach and W be a normed-linear space. Let T

be an arbitrary indexing set and let T;E L v, W) ;i€I. Then,

(1). either there exists M >0 such that HTIH <M, Vi€l (so (T,) are uniformly bounded)

or (ii). iéI¢|Ti[X)|VC:°°C for all x belonging to dense G set. (So, you see that the

° C‘Ti(XHV &4 will blow up for a large number of points).

Proof. For xE€V, define ¢(x|="iEI{

Ti(x)‘\/éé and you set V,={xEV:¢(x)>n}. Now, norm
is a continuous function, T;’s are all continuous functions and therefore, one can easily check V,
is open for all n. Now one of the two things can only happen, namely, all the V' ,’s may be dense

or there may be V', which is not dense.
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Assume that there exists N such that V, is not dense in V. Then there exists x,&V Ar>0 such

that B(xo;r/nV=¢. Therefore, for all ||x]<r, ¢(x+x,)<N. This implies that

alternative.

T,-(X+X0)HSN,V1EI. Now, you choose ||x||££ and then for all i€l

T,-(X)HSHTi(x+x0)H+HTi(x0)”£2N and this implies that for all i,

Ti||sg. So, this is the first

So, the second alternative is all V, are dense, therefore, N,V , is a dense Gy set and if xEn,V,

then ¢(x|=+o0 and that is precisely what the theorem is saying. So, this is called the Banach-

Steinhaus theorem.
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Corollary Let V be a Banach space and W be a normed-linear space and T,E LV ,W/|;iE€I.

Assume that l_él||T,-(X)||<°°,VXEV- Then that exists M >0 such that HTI-HSM,VI'EI. So, we
have simply excluded the second possibility and therefore, this is just the first possibility in the
previous theorem and therefore, you have point-wise bounded implies uniformly bounded.

So, that is why this is called the Uniform Boundedness Principle.

Corollary. Let V be a Banach space and W be a normed-linear space and (T,)EL(V ,W| such

that T1x/=1im T, (x)exists for all xEV. Then TELV,W| and ||T||<liminf, .iVT,Vi.

n-oo

<M as we know from the

Tn

Proof. (T,[x)) is convergent implies that it is bounded. Therefore,

previous corollary. T is clearly linear.
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T, HXHSM HXH Therefore, if you pass to the Ilimit, you get

Tl

Therefore, ‘

“T(x)|‘st|x|v<L and this implies that TEL[V,W]|. So, pointwise limit of bounded linear

operators is also a bounded linear operator, if V' is Banach.

Tn(x)Hs\/ V{ and therefore, if you took limit on

Now, if you take for all HXHS 1, you have ‘ T,

T Vi,

each side, you get HT(X]” <lim inf (',|Tn‘\/i,& and therefore, you have ||THS lim inf ¢
Corollary. Let V be a Banach space and BCV. Assume that for every fEV?,
f(B|={f[x):xEB} is a bounded set in RV C, whichever is the scalar field. Then B is bounded in
V.

Proof. You will look at J: VeV f[B|={J,[f:xEB]}. All the J, are bounded. So, by the

={|x|V ¢ and therefore B

JX

Hahn-Banach theorem | <C,V xEB. But J, is an isometry, so ‘ J,
is bounded in V.

So, we will now look at a very nice application of the uniform bonded principle to analysis.



