
Functional Analysis
Professor S. Kesavan

Department of Mathematics
The Institute of Mathematical Sciences

Lecture 16
Baire’s Theorem and Applications

(Refer Slide Time: 00:18)

We will now start a new topic. This I will call Baire’s theorem and applications. 

There are four grand theorems of functional analysis. The first one is the Hahn–Banach theorem

which we have already seen and three others follow from Baire’s theorem. 

Let us first recall what is Baire’s theorem. 

Theorem. Let  (X ,d) be a complete metric space and you have a collection of open and dense

sets (V n ) then ∩n=1,2, .. ,∞V n is also dense. 

So, in the complete metric space, if you have a countable family of open dense sets then the

intersection is also dense (countable intersection of open sets is not an open set in general). We

know that only finite intersections of open sets are open. But these are what are called Gδ-sets  (a

Gδ set is a countable intersection of open sets). So, if you have a countable collection of open

dense sets then the intersection is a dense Gδ.

Proof.  Let W ≠ϕ be open in X . We need to show that W∩ (∩n=1,2 , ..∞V n)≠ϕ. Then, every open set

will meet the intersection and therefore, the intersection is automatically dense. First, since V 1 is

dense,  W∩V 1≠ϕ and  also  open.  So  there  exists  x1∈W∩V 1 and  0<r1<1 such  that

B(x1; r1)⊆W∩V 1. 



So,  now  we  are  going  to  use  the  induction  hypothesis.  Assume  that  we  have  found

( x i )i=1,2,…n−1
, (r i )i=1,2 ,…n−1such that  B(x i ; r i)⊆V i∩B ( x i−1; r i−1)∧0<r i<

1
i
; i≥1.  So,  these  are  the

two conditions in the induction hypothesis. 
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Now  we  take  (V n) as  dense  and  since  B(xn−1; rn−1) is  open,  therefore,  there  exists

xn∈V n∩B (xn−1 ;r n−1). Again the set V n∩B (xn−1; rn−1) is open and therefore, there exists rn<
1
n

 ,

such that  B(xn ; rn)⊆V n∩B (xn−1 ;r n−1). So, what have we constructed? We have constructed a

sequence (x i) such that, if you take any i>n, j>n, then you have x i , x j∈B (xn; rn) and therefore,

d ( x i , x j )≤2r n<
2
n
. Therefore, (x i) Cauchy. X  is complete implies x i→x∈X . So, we have found a

candidate.  Now,  for  any  i>n , you  have  x i∈ B (xn , rn) and  therefore,  you  have  x i→x.  So,

x∈B (xn ,r n)⊆V n . So, x∈∩n=1,2,…∞V n. Also, x∈B (x1 ,r1) and this implies it x∈W . Therefore,

we have found a common element in W  and the intersection. This completes the proof. 

Remark. The  significance  of  this  result  is  not  really  the  denseness  of  ∩n=1,2,…∞V n.  The

significance of this result is that intersection  ∩n=1,2,…∞V nis non-empty. That is how it is often

used. 
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We can state  this  theorem in a different  way. If  V n is  open dense implies  V n
c is  closed and

nowhere dense and therefore, the theorem can also be stated as follows.

 Barie’s theorem. A complete metric space is not the countable union of nowhere dense sets. 

The countable union of nowhere dense sets  is  usually called  a first  category  and everything

which is not first category is called second category and Baire’s theorem says that complete

metric space is therefore a set of second category and that is why it is called the sometimes the

Baire’s category theorem. 

Corollary. In a complete metric space, the countable intersection of dense Gδ sets is a dense Gδ

set.  Now,  what  does  this  mean?  So,  Gδ set  is  the  countable  intersection  of  open  sets.  Let

(W n )be denseGδ sets. So,  W n=∩m=1,2. .∞V n,m;  V n,m are open. Since  W n are dense,  V n,m are also

dense. So  ∩n=1,2…∞W n=∩n=1,2…∞∩m=1,2..∞V n ,mand that is again a countable intersection of open

dense sets and therefore, it is also dense and since it is a countable intersection of open sets, it is

also a Gδ. Therefore, in a complete metric space, the countable intersection of dense Gδ sets is a

dense Gδ set. 

Corollary 2. In a complete metric space without isolated points, countable dense set is not a Gδ

set. 

So, when I say in such a metric space without isolated points, when I say dense Gδ, that means,

the set is automatically uncountable. So, that is how this Corollary is going to be used. Namely,

if you have a complete metric spaces out isolated points and you have a dense  Gδ, then it is

automatically uncountable. 



(Refer Slide Time: 13:58)

Proof. Let  us take  E={xk :k=1,2 ,…∞ } a countable dense set.  If  E is a  Gδ,  then  E can be

witness as  E=∩n=1,2 , ..∞V n;V nopen and then obviously,  V n is also dense (because it is bigger

than  the  dense  sets).  Now,  if  you  take  W n=V n∖∪k=1,2 ,…n{xk } is  also  dense.  Then

∩n=1,2,…∞W n=ϕ which is a contradiction to Baire’s theorem and therefore, this is not possible. 

So, if you do not have isolated points, then dense Gδ will automatically be a uncountable. 

The Baire’s category theorem has several applications. In this section, we will see its application

to Banach spaces. 
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Anyway, so now, we will do some applications of Baire’s category theorem in function analysis.

So, the first application of Baire’s category theorem is the principle of uniform boundedness.



Theorem. (Banach-Steinhaus theorem). Let V  be Banach and W  be a normed-linear space. Let I

be an arbitrary indexing set and let T i∈ L (V ,W ) ;i∈ I . Then,

 (i). either there exists M>0 such that ||T i||≤M ,∀ i∈ I  (so (T i) are uniformly bounded)

or  (ii).  ¿
i∈ I

¿|T i ( x )|∨¿=∞ ¿ for  all  x belonging  to  dense  Gδ set.  (So,  you  see  that  the

¿
i∈ I

¿|T i ( x )|∨¿¿ will blow up for a large number of points). 

Proof. For x∈V , define ϕ ( x )=
¿ i∈ I ¿|T i (x )|∨¿¿ and you set V n={x∈V :ϕ (x )>n }. Now, norm

is a continuous function,  T i’s are all continuous functions and therefore, one can easily check V n

is open for all n. Now one of the two things can only happen, namely, all the V n’s may be dense

or there may be V n which is not dense. 
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Assume that there exists N  such that V n is not dense in V . Then there exists x0∈V∧r>0 such

that  B ( x0; r )∩V=ϕ.  Therefore,  for  all  ||x||<r,  ϕ ( x+x0 )≤N .  This  implies  that

||T i ( x+x0 )||≤N ,∀ i∈ I .  Now,  you  choose  ||x||≤
r
2

 and  then  for  all  i∈ I ,

||T i (x )||≤||T i (x+ x0 )||+||T i ( x0 )||≤2N  and this implies that for all i, ||T i||≤
4N
r

. So, this is the first

alternative. 

So, the second alternative is all V n are dense, therefore, ∩nV n is a dense Gδ set and if x∈∩nV n

then ϕ ( x )=+∞ and that is precisely what the theorem is saying. So, this is called the Banach-

Steinhaus theorem. 
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Corollary Let  V  be a Banach space and  W  be a normed-linear space and  T i∈ L (V ,W ) ;i∈ I .

Assume that  ¿
i∈ I

||T i (x )||<∞,∀ x∈V . Then that exists  M>0 such that  ||T i||≤M ,∀ i∈ I . So, we

have simply excluded the second possibility and therefore, this is just the first possibility in the

previous theorem and therefore, you have point-wise bounded implies uniformly bounded.

So, that is why this is called the Uniform Boundedness Principle.

 Corollary. Let V  be a Banach space and W  be a normed-linear space and (T n)∈ L (V ,W ) such

that  T (x )= lim
n→∞

T n(x)exists  for  all  x∈V . Then  T ∈ L (V ,W ) and  ||T||≤ lim inf n→∞¿∨T n∨¿ .

Proof. (T n ( x )) is convergent implies that it is bounded. Therefore, ||T n||≤M  as we know from the

previous corollary. T  is clearly linear. 
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Therefore,  ||T n (x )||≤||T n||||x||≤M||x||. Therefore,  if  you  pass  to  the  limit,  you  get

||T ( x )||≤M∨|x|∨¿ and  this  implies  that  T ∈ L (V ,W ) . So,  pointwise  limit  of  bounded linear

operators is also a bounded linear operator, if V  is Banach. 

Now, if you take for all ||x||≤1, you have ||T n (x )||≤∨|T n|∨¿ and therefore, if you took limit on

each side, you get ||T ( x )||≤ lim inf ¿|T n|∨¿¿ and therefore, you have ||T||≤ lim inf ¿|T n|∨¿¿. 

Corollary. Let  V  be  a  Banach  space  and  B⊆V .  Assume  that  for  every  f ∈V ¿,

f (B )={f (x ) : x∈B } is a bounded set in R∨C, whichever is the scalar field. Then B is bounded in

V . 

Proof. You will look at  J :V ↦V ¿∗¿¿.  f (B )={J x ( f ) : x∈B}. All the  J x are bounded. So, by the

Hahn–Banach theorem ||J x||≤C ,∀ x∈ B. But J x is an isometry, so ||J x||=¿|x|∨¿ and therefore B

is bounded in V .

So, we will now look at a very nice application of the uniform bonded principle to analysis. 


