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Exercise 1. The first one Hahn Banach extension is not unique. In particular, x0≠ 0 implies that

there exists f ∈V ¿ , ||f||=1 , f (x0 )=¿|x0|∨¿ is not unique. So, let us give an example. Let us take

l∞
2
=(R2 ,∨¿ .∨|∞)  and l2 infinity, so, this is R2 with the norm infinity. Let us take x0=(1,1)

and  f (( x , y ) )=x , g ( (x , y ) )= y.  Any  linear  functional  is  continuous  in  finite  dimension.  So,

f , g∈ (l∞
2 )

¿
 and then it is very easy to check that  ||f||=||g||=1 (because |f ( ( x , y ) )|≤|x|≤||(x , y )||∞

and |g ( (x , y ))|≤|y|≤||x , y||∞ and then you take (1,0) or (0,1) as a test vector then you will get the

maximum is achieved. 

So, f (x0 )=g (x0 )=||x0||∞  and therefore this is not unique. 

So, when can we say the extension is unique? So, that is the next exercise. 

Exercise  2. We  say  a  normed  linear  space  V  is  strictly  convex,  if  ||f||=||g||≠0 implies

||f +g
2 ||<||f||=¿|g|∨¿. If V ¿ is strictly convex, then Hahn Banach extension is unique. 



Let W  be a subspace and let f ∈W ¿. Assume that we have two Hahn Banach extensions g , h. So,

you have g restricted to W  equals h restricted to W , which is equal to f  and ||g||=||h||=||f||. So,

these are the two Han Banach extensions we have. 
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Then you look at ||g+h
2 ||≤ 12 (||g||+||h||)=¿|f|∨¿. On the other hand, 

g+h
2

 restricted to W  equals f

(since  both  of  them are  equal  to  f )  and  therefore,  ||g+h
2 ||≥||f||(because  it  is  an  extension).

Therefore,  ||g+h
2 ||=||f||=||g||=¿|h|∨¿ and that  contradicts  the fact  that  V ¿ is  strictly  convex.

Therefore, you have the Hahn Banach theorem extension is unique.
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Exercise 3 Let us take a subspace W  of a normed-linear space V  and W ≠V . Then  there exists a

f ∈V ¿ such that f ≠ 0 and f  f restricted to W  is identically 0. 

So, this is the way of proving subspaces are dense. So, we have proved this using the fact that

you had the separation of convex sets. Now, we want to do it using the extension method. 

Proof. Let x0∈V∖W . Then you can consider 
V
W

 and you have x0+W ≠0. So, by Hahn Banach,

there  exists  a  ϕ∈( VW )
¿

such  that  ϕ ( x0+W )=||x0+W||≠0 and  ||ϕ||=1.  Now,  we  will  define

f :V ↦R.  We  define  f (x )=ϕ(x+W ).  So,  in  particular,  f (x0 )=ϕ (x0+W )≠0.  So,  f ≠ 0.  Is  it  a

continuous?. 
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What  about  |f ( x )|=|ϕ (x+W )|≤||ϕ||||x+W||≤∨|x|∨¿. Therefore,  f  is  continuous  i.e.,  f ∈V ¿.

Finally, if w∈W , we have f (w )=ϕ (w+W )=ϕ (0 )=0. Hence, f  restricted to W  is identically 0. 
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Exercise  4. Let  V  be a  normed-linear  space  and  W  be a  subspace in  V  and  X  be a  finite

dimensional  normed  linear  space.  Let  T :W ↦X  be  continuous.  Then  there  exists  T :V ↦ X

continuous linear continuous, and T  restricted to W  is nothing but T . 

So, previously we extended linear functional in the Hahn Banach theorem. Now, we are trying to

extend linear operators, but in the case where the Range space is finite dimensional.

 Solution. You take a basis  {e1 , ..eN } for  X . So, for any x∈ X , you can write  x= ∑
i=1,2 ,…,N

x iei,

x i∈R. Now you define Pi (x )=x i (the projection), then this is a continuous linear functional that

is  immediate.  This  implies  Pi ∘T :W ↦R is  a  continuous  linear  functional.  So,  there  exists



T i :V ↦R Hahn Banach  extension  of   Pi ∘T .  Now you define  T (x )= ∑
i=1,2 ,…N

T i (x ) ei.  Then,  of

course,  T  is  continuous  linear  and  if  you  have  x∈W , you  have

T (x )= ∑
i=1,2 ,…, N

T i (x ) ei= ∑
i=1,2,… ,N

P i (T ( x )) ei=T (x). So, this proves. 
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Exercise 5. Let  V  be normed-linear space and W ⊆V  finite dimensional subspace. Then there

exists a subspace Z which is closed such that V=W ⨁Z .

 Now, W  is finite dimensional so it is already closed. Now, given any subspace in linear algebra,

you know, we can extend the basis and therefore write V  as a direct sum of W  and Z. But we are

asking something more here we want Z to be also closed. 

Now, this  is  a  non-trivial  problem generally.  Given a  closed subspace  can you find another

closed subspace such that the direct sum of these two is in fact the whole space? This is a very

important question in function analysis, we are answering it partially here, namely, if W  is finite

dimensional. 

Solution.  Take  the identity  map  Id :W ↦W .  This  is  continuous,  linear  and since  W  is  finite

dimensional, therefore, by Exercise 4, there exists a P :V ↦W  such that P restricted to W  is Id. P

is of course continuous. Now, you define Z={x :P (x )=0 }. So, Z is closed. Suppose x∈W ∩Z.

Then you have that P ( x )=x∧P ( x )=0. This implies that x=0. Therefore, W ∩Z={0 } . Now, you

take any x∈V . Then

P¿

 Thus, x−P ( x )∈ Z . Therefore, V=W ⨁Z . 
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Exercise 6. Every finite dimensional space is reflexive. 

Solution. Let V  be finite dimensional. Then dimV=dimV ¿
=dimV ¿∗¿. ¿ Now, J is the canonical 

mapping. So, for ∈V , J x ( f )=f (x ). So, J ( x )=J x J is a mapping from V  to V ¿∗¿¿, which is an 

isometry i.e., J  is 1-1 also. V ,V ¿∗¿¿ are of same dimension implies J is onto and therefore, we 

have these V  is reflexive. So, every finite dimensional space is automatically reflexive. 
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 Exercise 7. Show that C0
¿
=l1. 

Solution. You take any y=( y1 , y2 ,….)∈ l1 and define f y ( x )= ∑
i=1 ,… ,∞

x i y i , x∈C0⊂ l∞.. 



So, |f y ( x )|≤||x||∞||y||1. Therefore, f y∈C0
¿ and ||f y||≤||y||1 . Now, let ϕ∈C0

¿. We want to show that

every element in C0
¿ occurs in this way. You take e i=(0… .,1,0,0 ,…… )∈C 0 and then you take

y i=ϕ (ei ) . 
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Now you fix a positive integer k  and define

x i
(k )
=0 if y i=0 ,1≤i≤k . x i

(k )
=

y i

¿ y i∨¿ if yi≠ 0 ,1≤i≤k . x i
(k )
=0 if i>k .¿

 Therefore,  automatically  x(k )
∈C0 andit  converges  to  0.  Now,  ϕ ( x (k ) )= ∑

i=1,…k

¿ y i∨¿¿ and

||x(k )||∞=1.Therefore,  ∑
i=1 ,… ,k

¿ yi∨¿≤||ϕ||||x (k )||∞≤||ϕ||.¿ So,  this  is  true  for  all  k  and  therefore,

y ∈ l1 and  ||y||1≤||ϕ||. Now  let  x∈C0 and  you  define  x(k )=( x1 ,…xk ,0,0 ,…)∈C0and

||x−x (k )||∞=max
i>k

¿ xi∨¿→0¿ since x∈C0 (this is exactly the place where l∞
¿
=l1does not work).



Therefore,  you  have  that  ϕ ( x )= lim ϕ ( x (k ) )= ∑
i=1,2, ..∞

x i yi=f y(x ) i.e.,  ϕ=f y . Therefore,

||y||1≤||ϕ||=||f y||≤||y||1 . Thus,  ||y||1=||ϕ||. So,  y↦ f y is an isometric isomorphism from l1 to  C0
¿

and therefore, C0
¿ is identified with l1.

 


