Functional Analysis
Professor S. Kesavan
Department of Mathematics
Institute of Mathematics Science
Lecture 14
Exercises - Part 1
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Exercise 1. The first one Hahn Banach extension is not unique. In particular, x,#0 implies that

there exists fEVL, f||:1, f(xo)ZZ,‘x0|\/(', is not unique. So, let us give an example. Let us take
2=(R?,v(.Vv|,) and 12 infinity, so, this is R2 with the norm infinity. Let us take x,=(1,1)
and f ((x, y)):x, g((x, y)): y. Any linear functional is continuous in finite dimension. So,

f,gE(li)L and then it is very easy to check that HfHZHgH:l (because ’f((x,y))’s|x|£|‘(x,y)||w

and ‘g((x,y])‘s|y|s‘ x,y||<,o and then you take (1,0) or (0,1) as a test vector then you will get the
maximum is achieved.
So, f(xo)Zg (Xo):HXon and therefore this is not unique.

So, when can we say the extension is unique? So, that is the next exercise.

Exercise 2. We say a normed linear space V is strictly convex, if Hf ||:HgH¢0 implies

+ .
Hng < H f H:L | g\v ¢ If V© is strictly convex, then Hahn Banach extension is unique.




Let W be a subspace and let fE W*. Assume that we have two Hahn Banach extensions g, h. So,
you have g restricted to W equals h restricted to W, which is equal to f and ||g||=HhH=H f H So,

these are the two Han Banach extensions we have.
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s%(HgH+HhH)=C\f|\/C. On the other hand, %h restricted to W equals f

g+h

Then you look at >

g+h

(since both of them are equal to f) and therefore, 2” f ”(because it is an extension).

g+h

Therefore, >

‘ZHf H:H gH:L‘h‘VC and that contradicts the fact that V° is strictly convex.

Therefore, you have the Hahn Banach theorem extension is unique.
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Exercise 3 Let us take a subspace W of a normed-linear space V and W #V. Then there exists a

fEV* such that f#0 and f frestricted to W is identically 0.

So, this is the way of proving subspaces are dense. So, we have proved this using the fact that

you had the separation of convex sets. Now, we want to do it using the extension method.

Proof. Let Xx,€V \W. Then you can consider % and you have x,+ W #0. So, by Hahn Banach,

. \4
th t El=
ere exists a ¢ (W

f:VeR. We define f(x|=¢(x+W). So, in particular, f|x,|=¢(x,+W|#0. So, f#0. Is it a

continuous?.
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What about |f(x]|:|¢[X+W)|S||¢||||x+WH£V|x‘\/Z,. Therefore, f is continuous i.e., fEV".

Finally, if wEW, we have f(w|=¢|(w+W |=¢(0)/=0. Hence, f restricted to W is identically 0.
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Exercise 4. Let V be a normed-linear space and W be a subspace in V and X be a finite
dimensional normed linear space. Let T:Wwr X be continuous. Then there exists T:Vw X
continuous linear continuous, and T restricted to W is nothing but T.

So, previously we extended linear functional in the Hahn Banach theorem. Now, we are trying to
extend linear operators, but in the case where the Range space is finite dimensional.

Solution. You take a basis {e;,..ey| for X. So, for any xE X, you can write X~ Z Xi€;,

i=12,..., N
x;€R. Now you define P,(x|=x, (the projection), then this is a continuous linear functional that

is immediate. This implies P;-T:Ww»R is a continuous linear functional. So, there exists



T;:V»R Hahn Banach extension of P;-T. Now you define Tixl= X T [xle;. Then, of

i=1,2,...N
course, T is continuous linear and if you have xEW, you have
Tix|= X Tlxle= 2, Pi(T(X))eizT(X).So,thisproves.
i=1,2,..., N i=1,2,..., N
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Exercise 5. Let V be normed-linear space and W CV finite dimensional subspace. Then there
exists a subspace Z which is closed such that V=W @ Z.
Now, W is finite dimensional so it is already closed. Now, given any subspace in linear algebra,
you know, we can extend the basis and therefore write V as a direct sum of W and Z. But we are
asking something more here we want Z to be also closed.
Now, this is a non-trivial problem generally. Given a closed subspace can you find another
closed subspace such that the direct sum of these two is in fact the whole space? This is a very
important question in function analysis, we are answering it partially here, namely, if W is finite
dimensional.

Solution. Take the identity map Id:W»W. This is continuous, linear and since W is finite
dimensional, therefore, by Exercise 4, there exists a P:V » W such that P restricted to W is Id. P
is of course continuous. Now, you define Z={x:P(x|=0]. So, Z is closed. Suppose xEW n Z.
Then you have that P(x|=xA P(x|=0. This implies that x=0. Therefore, W n Z=|0|. Now, you
take any x&€V. Then

P

Thus, x—P|x|€ Z. Therefore, V=W ® Z.
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Exercise 6. Every finite dimensional space is reflexive.

Solution. Let V be finite dimensional. Then dimV =dimV'=dimV"**. {, Now, J is the canonical

mapping. So, for €V, J,|f|=f (x). So, J(x|=J, J is a mapping from V to V****, which is an

isometry i.e., J is 1-1 also. V ,V**“* are of same dimension implies J is onto and therefore, we

have these V is reflexive. So, every finite dimensional space is automatically reflexive.
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Exercise 7. Show that Cj=1,.

Solution. You take any y=(y,, ,,....)El, and define fy(x):. > X, ¥, X€ECCI,,

i=1,..., 00



So,

fy(x)|stHw||yH1. Therefore, nyCf) and ny”SHyHl. Now, let ¢€Cg. We want to show that
every element in Cf) occurs in this way. You take e,:(O....,l,0,0, ...... )ECO and then you take

Yi:¢(ei)-
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Now you fix a positive integer k and define

xX=0if y,=0,1<i<k . xV=—— S :
Ly Viif y#0,1<i<k.x = 0if i>k..

(k)| _ o
Therefore, automatically x*'€C, andit converges to 0. Now, 9l )—__;k"}’i\/“ and

.....

YEI and Hy”lqubH Now let XxE€C, and you define Xx;= xl,...xk,O,O,...)ECOand

HX_X(k)|L:maX‘3XiVC - 0¢ since xEC, (this is exactly the place where I=1,does not work).

i>k



Therefore, you have that ¢(X):lim¢(xik‘\):_ Xiyi:fy<x) ie, ¢=f,. Therefore,

i=1,2,..00

HyHlﬁHd)H:ny”SHyﬂl. Thus, y||1=||¢H So, yrf, is an isometric isomorphism from I, to o

and therefore, Cj is identified with [,.



