Functional Analysis Professor S. Kesavan Department of Mathematics The Institute of Mathematical Sciences Lecture 13 Vector Valued Integration

(Refer Slide Time: 00:18)VELTOR VALUED INTEGRATION **XXX** V anto $/R$ $q: E_0: J \rightarrow V$ Meaning for Japandt $\circled{1} \text{ partition } \circ_{\Gamma} \text{ } \text{ } \text{ } \circ \text{ } \$ $\langle S(\nabla, f) \rangle = \sum_{i=1}^{n} f^{[i]} \Delta x_i$ $\Delta x_i = x_i - x_{i-1}$ VELTOR VALUED INTEGRATION V anto $/R$ $q: L_0, R \rightarrow V$ Meaning for Japanet $\begin{array}{lll} \mathcal{L}(x,f)&=&\sum\limits_{i=1}^{n}\Delta\mathbf{x}_{i}f(t_{i})&\Delta\mathbf{x}_{i}=\mathbf{x}_{i-1}\ \ &\ &\ &\ &\ &\ &\ &\ &\ &\mathcal{L}(x_{i-1},x_{i})\end{array}$

VELTOR VALUED INTEGRATION X V ants. $/R$ $\varphi: L_2, \mathbb{C} \longrightarrow \mathbb{V}$ Meaning for $\int \varphi(t) dt = \int \varphi(t)$ P pattion of [0,1] 0= ro ca, < ... < a, = 1 $f(y) =$

Now, we will discuss vector valued integration. So, let *V* a normed-linear space, we will discuss over **R** and let us take ϕ : $[0,1] \rightarrow V$ be a given continuous function. We will talk of continuous functions, but let us say, so we want to give a meaning to the expression $\int_{[0,1]}$ $\phi(t)dt = y \in V$. How do you define such an integral?

So, suppose you had just a real valued function, what would you do? you take a partition of $[0,1]$, say, $P = \{0 = x_0, x_1, \ldots, x_n = 1\}$ and then you would assign $S(p, \phi)$ which is the Riemann sum associate with this partition, which will be $S(p, \phi) = \sum_{i=1,2,...,n}$ $\phi(t_i|\Delta x_i)$ where $\Delta x_i = x_i - x_{i-1}, t_i \in [x_{i-1}, x_i]$. Then using some suitable limit process we would define the integral. Suppose we do the same thing. Now, of course, Δx_i must be written in the front because $\phi(t_i)$ is a vector and Δx_i is a scalar. So we will write here $S(p, \phi) = \sum_{i=1,2,...,n} \Delta x_i \phi(t_i)$ where ti belongs to the interval $|x_{i-1}, x_i|$. So, this notation is a bit faulty, but it does not matter, it does not take into account which *t*'s we are talking about.

So, if we take a limit and we are able to define the integral then if
$$
f \in V^{\delta}
$$
 then $f(S(p, \phi)) = \sum_{i=1,2,...n} \Delta x_i f(\phi(t_i))$ and then we pass on to the limit.
(Refer Slide Time: 04:03)

$$
V = \cos \theta \text{ and } \theta \text{ is } |W| \leq \theta \text{ and } \theta
$$
\n
$$
V = \int_{\theta} \frac{d\theta}{\sqrt{2}} \text{ and } \theta \text{ is } |W| \leq \theta \text{ and } \theta
$$
\n
$$
V = \int_{\theta} \frac{d\theta}{\sqrt{2}} \text{ and } \theta \text{ is } |W| \leq \theta \text{ and } \theta
$$
\n
$$
V = \int_{\theta} \frac{d\theta}{\sqrt{2}} \text{ and } \theta \text{ is } |W| \leq \theta \text{ and } \theta
$$
\n
$$
V = \int_{\theta} \frac{d\theta}{\sqrt{2}} \text{ and } \theta \text{ is } |W| \leq \theta \text{ and } \theta
$$
\n
$$
V = \int_{\theta} \frac{d\theta}{\sqrt{2}} \text{ and } \theta \text{ is } |W| \leq \theta \text{ and } \theta
$$
\n
$$
V = \int_{\theta} \frac{d\theta}{\sqrt{2}} \text{ and } \theta \text{ is } |W| \leq \theta \text{ and } \theta
$$
\n
$$
V = \int_{\theta} \frac{d\theta}{\sqrt{2}} \text{ and } \theta \text{ is } |W| \leq \theta \text{ and } \theta
$$
\n
$$
V = \int_{\theta} \frac{d\theta}{\sqrt{2}} \text{ and } \theta \text{ is } |W| \leq \theta \text{ and } \theta
$$
\n
$$
V = \int_{\theta} \frac{d\theta}{\sqrt{2}} \text{ and } \theta \text{ is } |W| \leq \theta \text{ and } \theta
$$
\n
$$
V = \int_{\theta} \frac{d\theta}{\sqrt{2}} \text{ and } \theta \text{ is } |W| \leq \theta \text{ and } \theta
$$
\n
$$
V = \int_{\theta} \frac{d\theta}{\sqrt{2}} \text{ and } \theta \text{ is } |W| \leq \theta \text{ and } \theta
$$
\n
$$
V = \int_{\theta} \frac{d\theta}{\sqrt{2}} \text{ and } \theta \text{ is } |W| \leq \theta \text{ and } \theta
$$
\n
$$
V = \int_{\theta} \frac{d\theta}{\sqrt{2}} \text{ and } \theta \text{ is }
$$

now when you pass to the limit $f(S(p, \phi)) \to f(y)$. On the other hand, $\sum_{i=1,2,...,n} \Delta x_i f(\phi(t_i))$ is nothing but the Riemann sum for the continuous real valued function *f* ∘ *ϕ* and therefore this should converge to integral $\int_{[0,1]} f(\phi(t)) dt$. And therefore, these two should be equal i.e.,

$$
(y) = \int_{[0,1]} f(\phi(t)) dt.
$$

We are going to make a definition.

Definition. Let *V* be a normed-linear space and ϕ : [0,1] \rightarrow *V* be a mapping.

So, we assume that $[0,1]$ is given in the Lebesgue measure, so I am not specifying it here.

The integral $\int_{[0,1]} (\phi(t)) dt$, if it exists, is a vector $y \in V$ such that for every $f \in V^c$ we have $f(y) = \int_{[0,1]} f(\phi(t)) dt$. So, it should be a vector such that for any $f \in V^{\delta}$ the integral should be equal to this real value of the above integral. So, now let us prove the following proposition. (Refer Slide Time: 08:34)

Proposition. Let *V* be a real Banach space and ϕ : [0,1] \mapsto *V* continuous. Then $\int_{[0,1]}^{\infty} \phi(t) dt$ exists.

Proof. [0,1] is compact, ϕ is continuous implies $\phi([0,1])$ is compact (continuous image of a compact set is compact) in *V*. Now, you take *H* to be the convex hull of $\phi([0,1])$ (it means that it is the smallest convex set which contains this image). Since *V* is complete, \overline{H} is compact. If you have a Banach space and you have a compact set *K* then the closure of the convex hull of *K* is also compact. In fact, because of the completeness, it is enough to show that \overline{H} is totally bounded and that can be done. Now, let *L* be an arbitrary finite collection of continuous linear

functional. You define $E_L = \{ y \in \overline{H} : f(y) = \int_{[0,1]}$ $f(\phi(t))dt$. So, this *y* satisfies the condition of

being the integral $\int_{[0,1]} \phi(t) dt$ only for finite number of linear functions, not for everything. Our aim is to find a *y* which does it for every linear functional.

EL is obviously closed.

(Refer Slide Time: 13:11)
 $\frac{Sup}{g}E_L \neq \phi$ X $L = \sqrt{4}, \cdots, \sqrt{6}\}$. A: $V \rightarrow R^{k}$ $A(z) = (f(x), \ldots, f(x))$ 4 cont live. \overline{H} off. \Rightarrow $A(\overline{H}) = K$ is compact, conver Assume $(t_{i,j}...;t_{k}) \notin K$
By H-B & a lin fill on \mathbb{R}^k at $f(g) < F$ $S_{\mathcal{H}}$ $E_L \neq \phi$. $L = \{f_1, \dots, f_k\}$ $A: V \rightarrow R^k$ $*$ $A(z) = (f(x), \ldots, f(x))$ 4 cont line. \overline{H} cpf. \Rightarrow A (\overline{H}) = K is compact, convex Assume $(t_{i,j}...j b_k) \notin k$
By H-B F a lin fal on \mathbb{R}^k at f (g, m, g,)< F(b, m,b)

Step 1. $E_L \neq \phi$. We are going to show that this is never an empty set. Given any finite collection you can always find a common vector such that the equality holds. So, let us take $L = \{f_1, \ldots, f_k\}$. Now I am going to define $A: V \mapsto R^k$ linear map such that $A(x) = (f_1(x),...,f_k(x))$. So, *A* is obviously continuous because each of these coordinates is continuous. *A* is continuous linear and *H* is compact. This implies that $K = A(\overline{H})$ is compact and convex. Assume that there is a vector $(t_1, \ldots, t_k) \notin K$. So, K is a compact, convex set and $\{t_1, \ldots, t_k\}$ is singleton which is also compact. So, by Hahn Banach, there exists a linear functional F on R^k such that $F(z_1,...,z_k) \leq F(t_1,...,t_k); \forall (z_1,...,z_k) \in K$. But what is a linear functional on R^k ? Dual of R^k is itself and a linear functional is just a linear combination of these things i.e., there exists

 $C_1, \ldots, C_k \in \mathbb{R}$ such that $\sum_{i=1,2,\ldots,k} C_i z_i \leq \sum_{i=1,2,\ldots,k} C_i t_i$ In particular if $t \in [0,1]$, you have $\sum_{i=1,2,...,k} C_i f_i(\phi(t)) < \sum_{i=1,2,...,k} C_i t_i$. So, now let us integrate this. Therefore, $\sum_{i=1,2,...,k} C_i m_i < \sum_{i=1,2,...,k} C_i t_i$, where $m_i = \int_{[0,1]}$ $f_i(\phi(t))dt$. In other words, if $(t_1,...,t_k) \notin K$, then $(t_1, \ldots, t_k) \neq (m_1, \ldots, m_k)$. So, this implies that $(m_1, \ldots, m_k) \in K$. But what is K ? *K* is nothing but the image *A*(\overline{H}). Therefore, there exists $y \in \overline{H}$ such that $f_i(y) = m_i = \int_{[0,1]}$ f_i (ϕ (*t*)) dt ,∀1≤*i*≤ k _{and} thus, $y \in E_L$. So, EL is nonempty.

Step 2. Let *I* I be a finite indexing set and then you take L_i , $i \in I$ finite collection of linear functionals in V^{ι} . Then you take $L = \bigcup_{i \in I} L_i$, so *L* is also finite. And it is very easy to check that $\cap_{i \in I} E_{L_i} = E_L$. Therefore this is not empty by Step 1. Therefore, we have shown that ${E_L : L \text{ finite } \subset \text{ of } V^{\iota} }$ has finite intersection property.

(Refer Slide Time: 21:13)

But \overline{H} is compact implies $\cap_{L,L \text{ finite } \subset \text{ of } V^c} E_L \neq \emptyset$. In particular, for every $f \in V^c$, you set $L = \{f\}$.

Therefore, there exists a
$$
y \in \bigcap_{L, L \text{finite} \subset \text{of } V^c} E_L
$$
 i.e., $\forall f \in V^c$ we have $f(y) = \int_{[0,1]} f(\phi(t)) dt$ i.e.,

$$
y=\int\limits_{[0,1]}\phi(t)dt.
$$

So, this proves that for continuous functions you always have the integral, very good.

One of the important properties of the integral in one dimensions is that, if you have a ϕ : [0,1] \rightarrow *R*

phi from 0 1 to R, then $\left| \int_{[0,1]} \phi(t) dt \right| \leq \int_{[0,1]}$ $\int \phi(t) \vee dt$. We want to generalize this to vector valued integration because this is a very very important estimate, so whenever we want to estimate the norm of an integral, this is the first step which we will do.

Proposition Let *V* be real normed-linear space, ϕ : $[0,1] \rightarrow V$ to be continuous. Then,

$$
\left\|\int_{[0,1]}\phi(t)dt\right\|\leq \int_{[0,1]}\dot{c}|\phi(t)|\vee dt.
$$

Proof. Again, this is an application of the Hahn Banach theorem. There exists $f \in V^{\iota}$ with $||f|| = 1$

such that $\left\| \int_{[0,1]} \phi(t) dt \right\| = f \cdot \phi$.

So, we have done integral over $[0,1]$, but you can do this in any interval.

Remark. Suppose ϕ : [a , b] \rightarrow *V* to be continuous. How will I define the integral in the same way?

Define $\psi:[0,1] \mapsto V$ where $\psi(t) = \phi(a+t(b-a))$ and we define $\int_{[a,b]} \phi(t) dt = (b-a) \int_{[0,1]} \psi(t) dt$ (by change of variable) and you can check both the properties, namely,

1. ∀ f ∈ V^{ι} , f ι $\sum_{a,b} \left| \int_{[a,b]} \phi(t) dt \right| \leq \int_{[a,b]}$ $\mathcal{L}|\phi(t)| \vee dt$. Both these you can check yourself.

(Refer Slide Time: 27:18)

Now assume ϕ : [0, ∞ } \mapsto *V* to be continuous, and $\lim_{\lambda \to \infty} \int_{[0,\lambda]} \phi(t) dt$ exists. What does this mean? You

take any sequence (λ_n) with $\lambda \to \infty$ then $\lim_{n \to \infty} \int_{0}^{1}$ $\int_{[0,\lambda_n]} \phi(t) dt$ exists and limit is independent of the sequence chosen. So, this is the meaning of the statement. Then we define

$$
\int_{\xi} \phi(t) dt = \lim_{\lambda \to \infty} \int_{[0,\lambda]} \phi(t) dt.
$$
 Once again, for every $f \in V^{\lambda}$, $f \in \text{and } \left| \int_{[0,\infty]} \phi(t) dt \right| \leq \int_{\xi} \lambda |\phi(t)| \vee dt$. You

can automatically see that all these exist and this will be the norm. You can define the integrals over other kinds of infinite intervals in a similar way.

(Refer Slide Time: 29:54)

Example Let us take (X, S, μ) be a measure space. So, that means X is a set, S is a sigma algebra on *X* and μ is a measure and then we have the Lebesgue measure of function. So, now you look at $\phi: X \mapsto V$. We say ϕ is weakly measurable if the map $x \in X \mapsto f(\phi(x)) \in R$ is measurable for every $f \in V^{\delta}$. So, now let us assume two things, (i) we assume that ϕ is weakly measurable, (ii) $\int_{X} ||\phi(x)|| d\mu(x) < \infty$, (iii) *V* is reflexive. Then \int_{X} $\phi(x) d\mu(x)$ exist.

(Refer Slide Time: 32:52)

$$
y \in V
$$
 such that $\lambda(f)=f(y)$, $\forall f \in V^{\lambda}$ and that is exactly $f(y)=\int_{X} f(\phi(x)) d\mu(x)$, $\forall f \in V$