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We will now talk about geometric versions of Hahn Banach. So geometric versions means, we

are talking about separation of convex sets by means of hyperplanes. What do we mean by a

hyperplane? So, this is a generalisation of the notion of a straight line in the plane or a plane in

R3 and so on. 

So, what is a straight line?

 ax+by=c is  a  straight  line  in  the  plane  R2and  this  can  be  written  as  f (x , y )=c  where

f (x , y )=ax+by and that is a linear functional on R2. Similarly, a plane is ax+by+cz=d and this

can be written as f (x , y , z )=d where f (x , y , z )=ax+by+cz  and that is again a linear functional

in  R3.  Therefore,  in  general,  let  V  be  real  norm linear  space.  A  hyperplane  in  V  is  a  set

[ f=α ]=\{ x∈V : f (x )=α \} where  f  is a linear functional which is not identically 0. So,  α  is a

constant. So, we are not talking about continues linear functional; we are only saying hyperplane

is given by the constant sets of a linear functional. So, we have the following proposition.

Proposition. A hyperplane [ f=α ] is closed if and only if f  is continuous. 



Proof. One way is obvious. If f  continuous then clearly \{x∈V : f ( x )=α \}  is a closed set. So,

[ f=α ] is closed. So, we want now prove the converse. Assume [ f=α ] is closed. So, let us call

this set as H . So, H=[ f=α ]. So, this means that H c is open and since f  is not identically 0, H c is

non empty. Why? If α=0 ,then there exists x0 such that f (x0 )≠0 and hence x0∈H
c. If α ≠0, then

0∈H c. So, in either case you have that the complement of the hyperplane is a non empty open

set. 
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So now, we want to show that f  is continuous. So, let x0∈H
c. So, f (x0 )≠ α. So, without loss of

generality, we will assume that f (x0 )<α . Now, H c is open. So, there exists a ball B ( x0 ,2r )⊆H c,

this is just the definition of openness. 

So,  we  claim  f (x )<α ,∀ x∈B ( x0 ,2 r ) . Let  there  exists  x1∈B (x0 ,2r ) such  that  f (x1 )>α.  Set

t=
f ( x0 )−α

f (x0 )−f (x1)
. Then 0< t<1.  Now, let  x t=t x1+ (1−t ) x0 . Then you have f (x t )=α , which is a

contradiction.

So, now you take any z such that ||z||≤ and then f (x0+rz )<α . This implies that, for all such z,

f (z )<
α−f ( x0)
r

 and  therefore,  the  image  of  the  unit  ball  is  bounded.  This  implies  that  f  is

continuous. So, a closed hyperplane is a level set or set where f  takes a constant value and f  is a

continuous linear functional. 



(Refer Slide Time: 08:28)

So now, we are going to through a proposition which is a very useful one. 

Proposition. Let V  be real normed-linear space and C⊆V  be a convex and open set. Let 0∈C.

For x∈C , define P ( x )=inf {α>0:α−1 x∈C }. Then,

1. there exist an M>0 such that 0≤ P (x )≤M||x||,∀ x∈V . 

2. C= {x∈V :P ( x )<1}

3. ∀ x∈V ,∀α∈R, P (αx )=αP ( x )

4. ∀ x , y∈V , P ( x+ y ) ≤P (x )+P( y). 

Proof P≥0 is obvious. Now, C is open and 0∈C. Therefore, there exists a ball B (0,2r )⊆C and

therefore, if you take any x∈V , you have r
x

¿|x|∨¿∈C ¿
. So, 

r
¿|x|∨¿¿

 can be thought of as an

α−1, such that  α−1 x∈C . Therefore,  P (x) is the infimum of all such numbers. So, this implies

that P ( x )≤
||x||
r
,∀ x∈V . So, you can take 

1
R

 as M and so, this proves the first one. 
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So now, let us see the second one. So, let  x∈C . Since  C is a convex set, there exists an  ϵ>0

such that  (1+ϵ ) x∈C . Therefore,  P ( x )≤ 1
1+ϵ

<1. Conversely, let us assume that  P ( x )<1. Then

what does it mean?  P (x) is the infimum of all  t  such that  
1
t
x∈C . So, since the infimum is

strictly less than one there exists a member of that set where you are taking the infimum which

lies between these two numbers. This implies, there exists a t<1 such that 
1
t
x∈C . So, then C is

convex and 0∈C, therefore, t .
1
t
x+(1−t ) 0=x∈C.  So, we prove the second one. 



Now, the third one is obvious I will not bother about it, it is just straightforward right from the

definition you have this. 

So,  let  us  now  prove  the  last  condition.  So,  let  x , y∈V .  So,  by  the  definition  of  P (x),

1
P ( x )+ϵ

x∈C and  
1

P ( y )+ϵ
y∈C. Now you take  t=

P ( x )+ϵ

P (x )+P ( y )+2ϵ
. Then  0< t<1. Since  C is

convex,  therefore,  t
1

P ( x )+ϵ
x+(1−t ) 1

P ( y )+ϵ
y= x+ y
P ( x )+P ( y )+2ϵ

∈C .  So,  this  means  that

P ( x+ y ) ≤P (x )+P ( y )+2ϵ . 2ϵ  is arbitrary, so this can go and so, you have proved this condition.

So, this proves all the properties of the Minkowski function. 
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We will now use this to prove a proposition.

 Proposition V  be a real normed-linear space and  C be nonempty open convex set in  V  and

assume and x0∈C. Then, there exist f ∈V ¿ such that ∀ x∈C , f (x )< f (x0). 

Proof. Without loss of generality we can assume 0∈C 0 belongs to C, why? Suppose 0∉C, So,

there  exists  some  x1∈C.  Now  you  will  consider  the  set  C−x1={x−x1 :x∈C }.  Then

x0−x1∉C−x1 and 0∈C−x1 . So, we have the previous situation, namely, 0 is in the convex set

and this  C−x1is nothing but you have just  translated the origin.  So, the convex set remains

convex there is no change in that. So, by the proof for previous case, there exists  f ∈V ¿ such

that,   ∀ x−x1 , x∈C,  we  have  f (x−x1 )< f (x0−x1) and  by  linearity  this  means  that



f (x )< f ( x0 ) ,∀ x∈C . So, there is no loss of generality in assuming that 0∈C. So, 0∈C and now

we take W=span {x0}={t x0 :t ∈R }. Now, we define g :W ↦R as g ( t x0 )=t . This defines a linear

functional on this. Let t>0. Now, 
1
t
t x0∉C . Thus, t ≤ P ( t x0 ) . g ( t x0 )=t ≤ P (t x0 ) , if t>0. This is

trivially true if t ≤0. So, this is true in fact for all t . 
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Recall that P P satisfies the conditions which we prove the very first Hahn Banach theorem and

therefore, we get there exists an f :V ↦R,  linear extension of g and f (x )≤P ( x ) ,∀ x∈V . Now,

f (x )≤ P ( x )≤M∨|x|∨¿. This is also true for  −x and therefore,  |f ( x )|≤M||x||. and this implies

f ∈V ¿ (it  is  linear  and it  is  continuous therefore,  it  belongs to  V ¿).  Then if  x∈C ,  we have

f (x )≤P ( x )<1 (as x∈C)¿ g ( x0 )= f (x0) and this completes the proof. 

So we will now use this theorem to prove some separation theorems of convex sets. So, when we

have two convex sets which are disjoint, we will show that you can separate them by means of

hyperplane and sometimes under some other conditions you can actually strictly separate them.

So, we have to measure this disjointeness properly. So, we will do that.


