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Let us look at the following two relations. Let V  be a nonlinear space and V ¿ be the dual space.
So, for every f ∈V ¿ ,  ||f||=¿||x||≤1 , x∈V ¿ f (x )∨¿…. (1 ) .¿ 

For every x∈V , (we just saw in the last corollary of the Hahn Banach theorem)
||x||=¿||f||≤1 , f ∈V ¿

¿ f ( x )∨¿= max
||f||≤1 , f ∈V ¿

¿ f (x )∨¿…… (2 ) .¿¿

So, it says in the first one, the supremum need not be attained, whereas, in the second one the

supremum is always attained and therefore, it is a maximum this is the starting point of a very

interesting concept in functional analysis this is called reflexivity. 

So, let us take x∈V  and I define J x∈V
¿∗¿=dual of V ¿

¿by J x ( f )=f ( x ) (the evaluation of  f  at x). Then

what  does  (2)  imply?  (2)  implies  that  J x∈V
¿∗¿¿ and  in  fact,  ||J x||V ¿∗¿

=||x||V .¿
 So,  the  mapping

J :V ↦V ¿∗¿ .¿ defined by J ( x )=J x is linear and preserves norms and so it is called an isometry. In

particular, it is one to one and therefore, it will map V  into a subspace of V ¿∗¿¿.
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Definition. V  is said to be reflexive if the map J  is surjective. 

What does this mean? Every element of V ¿∗¿¿ i.e., every continuous linear functional on the dual

space  V ¿ is actually nothing but an evaluation functional which comes from  V  and it is just

evaluation at  that  point.  So,  this  is  what  we mean by saying that the space is  reflexive  and

therefore, this mapping is then one to one, onto and continuous because it is an isometry it is

continuous both ways. And then you have that V  is can be identified with V ¿∗¿¿. So, such a space

is called a reflexive space and it is this particular mapping J  which should be surjective. It is not

enough if V  is isomorphic to V ¿∗¿¿ by some other mapping; we want this particular mapping J,

namely, the evaluation functional mapping, has to be surjective. 



If the space is reflexive, you apply relation (2) for V ¿ instead of  V ,  then you will get V ¿∗¿¿ will

be just V  again, hence, because of the isometry J x you will get that the supremum is attained in

(1) also. If V  is reflexive, then ¿=maxin (1) as well. Now, there is a deep theorem of James if

sup equals max in (1) for all  f ∈V ¿, then  V  is reflexive. So, this is a necessary and sufficient

condition. This we will not prove. So, this is a very deep theorem in this. 

Now, the dual space is always complete. So, reflexivity occurs only in Banach spaces. 

If  V  equal  V ¿∗¿¿ and if isomorphic through this mapping  J, then automatically since  V ¿∗¿¿ is

complete, V  has to be complete. So, the notion of reflexivity is only there for Banach spaces. 

Example Let  1<p<∞and  then  you  look  at  l p which  is  set  of  all  sequences  ( x i ) such  that

∑
i=1,2…,∞

|x i|
p
<∞and you have ||x||p=( ∑

i=1,2…,∞
|x i|

p

)
1
p . This is a Banach space and we have seen this. 
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Now, I am going to compute what its dual is and identify that. So, let us take p¿ is the conjugate

exponent, what does it mean? 
1
p
+
1
p¿=1. Let y ∈ lp¿ . For x∈ l p , define f y ( x )= ∑

i=1,2 ,…,∞

x i yi. I am

doing this in the real case, if it is a complex case, it will be x i y i. So, that is a convention which

we take. So, we are doing everything in case of reals, but you can change it with y i and whatever

I am going to say will go through and therefore, you we will just work with this. Then, is this

well defined? Yes, because of Holder’s inequality, |f y ( x )|≤||x||p||y||p¿ . 



So,  f y∈ lp
¿ and  ||f y||≤||y||p¿.  I  want to now show that every continuous linear  functional  on  l p

occurs in this fashion and in fact this inequality is an equality.

 So, let us take let now f ∈ l p
¿ . It is a arbitrary element of the dual. Now let (e i) be the sequence

which is 0 everywhere, 1 in the i-th place and you define f i= f (e i). So, now you have a sequence

f=( f i). So, I have a candidate for an element in  l p
¿ . So, the questions I am going to ask are, if

f ∈ l p¿ and can we say f (x )= ∑
i=1,2,…∞

xi f i ,∀ x∈ l p and then thirdly, ||f||p¿=¿|f|∨¿ . So, these three

questions if you answer then we will say that in fact, the dual of l p is nothing but l p¿. So, that is

why we have put this notation here. 

Let n be a fixed positive integer. 
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We define (x i) in the following manner:

x i=0 , if f i=0 ,1≤i≤ nand xi=
|f i|

p¿

f i
if f i≠0 ,1≤i ≤n and x i=0 , if i>n.

So, if you look at x , it is in fact of the form x=( x1 , x2 ,… xn ,0,0 ,… )∈ l pand further you can say
x= ∑

i=1,2 ,…∞

x ie i. Therefore, since f  is linear, 

                            f (x )= ∑
i=1,2,…∞

xi f (e¿¿ i)= ∑
i=1,2 ,…∞

x i f i¿.

 But let me put what is the definition of x i. f (x )= ∑
i=1,2, .. n

|f i|
p¿

. Therefore,

∑
i=1,2 ,…n

|f i|
p¿

≤||f||||x||p=||f||( ∑
i 1,2,…n

|f i|
p¿

)
1
p . This implies ( ∑

i1,2 ,…n
|f i|

p¿

)
1
p

¿ ≤||f||.  Now, this is true for all

n. So, this implies that f ∈ l p¿ and ||f||p¿≤∨|f|∨¿ .
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Further,  if  you take  x∈ l p then if  you look at  ∑
i=1,2 , ..n

x i ei→x in  l p as  n→∞ .Because of the

continuity of f , we have f (x )= ∑
i=1,2,…∞

xi f i.

In other words, f  is nothing but f f  . So we have shown that ||f||p¿≤||f||=||f f||≤||f||p¿  and therefore,

the two norms are equal and so, you have||f||p¿=||f||..

Thus we have that l p
¿
≅ l p¿ . lp via the relation y↦ f y .

 So now you can do the same game with  p¿.  So, similarly,  l p¿
¿ ≅ l p. So  l p

¿∗¿=lp ¿ and in fact the

mapping J=identity .  Therefore, l p is reflexive. So, this is an example of a reflexive space. 
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In the previous thing, as I said, we did everything for real. So, if we are looking at complex

sequences  then  you  will  define  f y ( x )= ∑
i=1,2 ,…∞

x i y i and  then  the  mapping  y ∈ lp¿↦ f y∈ lp
¿  is

conjugate linear. What does it mean? You have f x+ y=f x+ f y ; f αx=α f x . This is a conjugate linear

map, but it is still an isomorphism, the mapping J  is identity and it is on to everything else goes

through.

 Example In the same way you can show we can show that l1
¿
=l∞. So, given a continuous linear

functional f ∈ l1
¿, there exists a y ∈ l∞ such that f (x )= ∑

i=1,2,…∞

xi yi and ||f||=||y||∞. 



Now,  if  you  start  with  l∞
¿ ,  is  l∞

¿
=l1?  Answer  is  no.  So,  if  I  have  y ∈ l1 , I  can  define

f y ( x )= ∑
i=1,2 ,…∞

x i y i ,∀ x∈ l∞ . This is a continuous linear functional by Holder inequality and in

fact, you will have ||f y||=||y||1.  
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But, but there exists f ∈ l∞
¿  which does not arise in this way i.e., there does not exist y ∈ l1 y in l1

such that  f y=f . Therefore,  l1 are not reflexive. Later we will see that this also means l∞ is not

reflexive. 

So, we want to produce a continuous linear functional on l∞ which will not come in this way. So,

let us take G⊆ l∞ set of all all convergent sequences. So, this is a subspace. If  x∈G, then you

map it to lim
i→∞

x i=: f ( x ) . Then |f ( x )|≤||x||∞ and therefore, f ∈G¿. So, by Hahn Banach, there exists

a  continuous  extension  to  l∞ preserving  the  norm,  let  us  continue  to  call  that  as  f .  Claim

f ≠ f y ,∀ y∈ l1 . So, you cannot produce  y ∈ l1 which comes like this, let us assume  f=f y  for

some y ∈ l1. So, now we want to get a contradiction.

So, you look at the following sequence x(n)∈ l∞=(0 ,…0,1,1,1 ,…)  upto the n-th place it is 0. So,

this  is  a  convergent  sequence  limit  is  1.  So,  f (x (n ) )=1 ,∀n . So,  if  f=f y,  then

f (x (n ) )=f y ( x (n ) )= ∑
i=n,…∞

y i . So 1≤ ∑
i=n ,…∞

y i   yi. This is a contradiction, since y=( y i )∈ l1.

If it is in l1, the tail of a convergent series should be going to 0 instead it is always greater equal

to 1. So, there do exist continuous linear functionals on  l∞, which do not come from  l1,  and

therefore, l1 is not a reflexive space. 

Exercise C0={x=( xi ) : x i→0}. We saw this was a close subspace of l∞. So, it is a Banach space.

Show that C0
¿
=l1 and l1

¿
=l∞. So, C0 and l∞ are not the same obviously, this is strictly proper close



subspace of l∞ and therefore, this is another a direct proof that these two spaces are not the same,

I mean that l1 is not reflexive. 

So, C0
¿
=l1 and l1

¿
=l∞ and therefore, you have all these are examples of non reflexive spaces. But

l p is reflexive for all 1<p<∞ . We will see many other ways of proving this non reflexivity of the

spaces. So, with this I will stop the analytic version and so discussion of reflexivity and which

was also a consequence of analytic version of the Hahn Banach theorem. And so, our next topic

which we will take up now are the geometric versions of the Hahn-Banach theorem. 


