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Hello, welcome to this course on Functional Analysis.
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I will be following fairly faithfully the book Functional Analysis by myself, which appears in the

TRIM series, number 52 of the Hindustan book agency. So, this is the book which we will be

following. So, functional analysis is essentially the marriage of linear algebra and analysis; we

do analysis on vector spaces. And to do that a vector space needs to be endowed with a topology

which has to be compatible with the linear structure. So, more precisely we have the following

definition:

Definition.   A topological vector space is a vector space  V  over  R or  C (we will always only

have these two fields) with a topology which is Hausdorff and such that the following mappings

are continuous: 

            Vector Addition:    ( x , y )∈V ×V⟼x+ y∈V ,∀ x , y∈V . 

            Scalar Multiplication: (α , x¿∈F×V⟼α x∈V , ∀ α∈F , ∀ x∈V .

             F=R or C. 

So, we need that these two mappings are continuous. 

The standard example of topological vector space is what we call normed linear space.
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Normed linear space.  This is a vector space which is equipped with a norm. 

What is a norm? 

Norm. Let V  be a vector space over R or C. A norm is a function from V  to R, such that

 ( i )∀ x∈V , we have ¿∨x∨¿≥0,

 ( ii )||x||=0⟺x=0,

 ( iii )∀ x∈V ,∀α∈F we have ||αx||=|α|∨¿ x∨¿; F=R∨C . 

 (iv) The triangle inequality:  ∀ x , y∈V , we have ||x+ y||≤||x||+¿|y|∨¿. 

 Whenever we are confronted with the problem of verifying whether given function defines a

norm or not, the first three properties will be more or less obvious, and most of the effort, if any,

would go in verifying this last statement, namely the triangle inequality. So, once a vector space

with a norm would be called a normed linear space. So, given a normed linear space we can

define a metric d ( x , y )=¿|x− y|∨¿. It is clear that d ( x , y ) is non-negative and d ( x , y )=0 if and

only if  x= y . Now, if you have x , y ,∧z then x− y  can be written as x− y=( x−z )+(z− y) and

therefore by the triangle inequality, we get  ||x− y||≤||x−z||+¿|z− y|∨¿. Therefore, the distance

function d  satisfies the usual triangle inequality for a metric; and that is why we have the same

name for these two inequalities.



 Therefore, automatically a normed linear space gets a topology defined by this norm which is a

nice metric topology; and that is called the norm topology of this vector space. So, now let us see

whether this norm topology makes those two functions continuous. Since we are dealing with

metric spaces; it is enough to check continuity via convergence of sequences.
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Now, what do we mean by xn→x in a normed linear space V . 

Definition of convergence: xn→x if  ||xn−x||→0 as  n→∞.

Now if you have xn→x, yn→ y, then you can write that 

                                  ¿. 

So, xn+ yn→x+ y; so, we have that vector addition is indeed continuous.

Similarly, if xn→x in V  and α n→α in F (which is always Ror); then by adding and subtracting

the appropriate thing we can have 

||αn xn−αx||≤|αn|||xn−x||+||x|||α n−α|.

 Since  αn → α ,  ||x|||α n−α|→ 0  and since  xn → x,  ||xn−x||→0and  αn being  a  convergent

sequence  is  automatically  bounded,  therefore  |α n|||xn−x||→0.  So,  you  get  αn xn→αx . Thus

scalar multiplication is also continuous and therefore a normed linear space is automatically a

topological vector space. 



The norm itself is a continuous function in a vector space, because if you are given two vectors x

and y , by writing x=( x− y )+ y and using the triangle inequality:

                         ||x||≤||x− y||+||y||hence ||x||−¿|y|∨≤||x− y||,

Similarly, ||x||−¿|y|∨≤||y−x||, but ||y−x||=|−1|||x− y||=||x− y||.

Therefore,  you  get  ¿||x||−||y||∨≤||x− y||. This  is  very  useful  and  a  useful  inequality  to

remember; and this shows that the norm itself is a continuous function in a normed linear space. 

So, what is you have in a normed linear space and the associated norm topology with symmetric

topology? You have sequences which are Cauchy and if every Cauchy sequence converges, you

say that this space is complete.

(Refer Slide Time: 10:20)

A complete normed linear space is called a Banach space; i.e., we have a vector space on

which we have defined a norm that gives you a metric topology called the norm topology, and if

this topology is complete then the normed linear space is called a Banach space.

 So, now it remains to give some examples of normed linear spaces. So, I am going to give three

classes of examples: 

                                 ( i ) finite dimensional; 

                                 ( i i ) sequence spaces;

                                 ( iii )function spaces. 



Therefore, this is a very rich class and you will see several examples of function spaces during

the course. To start with, this is a good way of classifying the vector spaces and looking at the

various examples. 

So, let us start with finite dimensional spaces. 

Example 1.  Let us just take  R.  In throughout, I am not going to say  R or  C;  I will do the

calculations for  R and you can easily check that the complex case is identical almost. In case

there are some special changes to be made; I will then explain in that situation. So, I will deal

with the real vector spaces for most of the time, and most of those results will carry over to the

complex case without problem.

So,  R is a one dimensional vector space over itself, and we define the norm of  x as the usual

modulus of  x. Then of course it is now trivial that all the three properties, the norm ¿ x∨¿ is

equal to 0 if  and only if  x equals to 0. And the triangle inequality  is of course well known

|x+ y|≤∨x∨¿ +¿ y∨¿. And R is a complete metric space as you know and therefore this is an

example of a Banach space.

Example 2. Let us take another example. This time I will deal with R2; so given any vector x in

R2, it will have two coordinates x1 and x2. And I am going to define

                                                   ¿|x|∨¿2=√ (x1
2
+ x2

2
)¿ 

Again the first three properties, non-negativity, equal to 0 if and only if x equals 0; and ¿|αx|∨¿

equals |α|∨|x|∨¿ are all trivial from this. So, what about the triangle inequality? So to see the

triangle inequality, we call that ¿|x|∨¿ is nothing but the magnitude of  x1, x2. So, for any two

vectors x , y∈R2, x+ y represents the diagonal of the parallelogram formed by x and y . So, now

its a old theorem from high school that two sides of a triangle are in length greater than the third

side.  So that  immediately  tells  you that  ¿|x+ y|∨¿2≤¿|x|∨¿2+¿|y|∨¿2 ¿¿¿.  In fact,  the name

triangle  inequality  comes  only  from  this  case,  because  this  is  the  generic  case;  and

generalizations have been done from this and therefore this shows that this is a norm. 

We can give one more norm on R2, say,  ||x||1=|x1|+¿ x2∨¿. And in this case its even easier to

check the triangle inequality because it just comes from the triangle inequality of the mod. 



Now, in both these cases if you take a Cauchy sequence  (xn); then  xn
1 will also be a Cauchy

sequence and xn
2  (the sequence of second coordinate) will also be a Cauchy sequence. Therefore,

xn
1 will converge to some x1; xn

2 will converge to some x2. And we denote that x=(x1 , x2), and it

is immediate to see that
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¿|xn−x|∨¿1→0∧¿|xn−x|∨¿2→0¿¿ because of the component wise convergence, the vector
 convergence also takes place. So, R2 with either of these norms is a Banach space.

Example 3.  Now, we will generalize all of this and then let us go to RN; Let us go to RN . 
So any vector x, you write  x=(x1 , x2 ,…, xN); then let 1≤ p<∞. Then we define 

||x||p=( ∑
{i=1,2 ,…N }

|x i|
p

)
1/ p

And I am also going to define another norm: 

                                                     ||x||∞=ma x i=1,2 ,…N {∨x i∨}    

Now, it is easy to see again that the first three properties of a norm are immediately satisfied. The

triangle  inequality  is  easy  for  ||x||∞,  because  you  have  |x i+ y i|≤|x i|+|y i|≤||x||∞+||y||∞ for  all

i=1,2 ,…N .   So  if  I  take  the  maximum on the  left  hand side;  I  get   ||x+ y||∞≤||x||∞+||y||∞.

Therefore, this becomes a normed linear space. 

Now, our main job is to show the triangle inequality is true for each of  ||x||p for all 1≤ p<∞.



Once this is done, we see that all of these define norms on  RN . So, we have an uncountable

family of norms defined here and in each case if you took a Cauchy sequence; it automatically

means that the coordinate sequences are also Cauchy. Therefore they will all converge since R is

complete, C is complete; and therefore component wise you will have xn ,i→x i. Consequently if I

define  ¿(x1 , x2 ,…, xN);  then  you  will  get  ||xn−x||p→0.  These  are  very  easy  to  check  and

therefore our job will be complete.

So, RN with any of these norms will be a Banach space provided we have shown that the triangle

inequality is true for ||x||p; 1≤ p<∞. For p=1, we have already seen it, so for 1<p<∞, we want

to show that ||x||p  is indeed a norm and which we will now do.


