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If the curve is given in parametric form, then what do we do? Let us consider this example. We
have a circle of radius 1 centered at (0, 1). We have a circle having its center at (0, 1) and it has
radius 1. That is revolved about the G-axis. Does it touch the G-axis? Yes, since its center is (0, 1)
and radius is 1. When it revolves about the G-axis, what is the surface area of revolution?. Look at
the picture this way. You have the circle which is touching the G-axis its revolution about the G-axis
would give a picture like this. It is a surface, and we want to find the area of this surface.

Since it is a circle, it will be easier to parameterize. If a circle has center at (0, 1) and radius A ,
then it is written as G = 0 + cos C, H = 1 + sin C for 0 ≤ C ≤ 2c. Here then the circle is parameterized
by G = cos C, H = 1 + sin C for 0 ≤ 2 ≤ 2c. That is how we get the parameterization of the circle.

Then we should obtain 3B, which will be computed as the square root of (3G/3C)2 + (3H/3C)2

into 3C. We now have 3G/3C = 3 (cos C)/3C = − sin C and 3H/3C = 3 (1 + sin C)/3C = cos C. Thus,
3B =

√
(− sin C)2 + (cos C)2 3C = 3C. Therefore, the surface area will be the integral from 0 to

2c, as C varies from 0 to 2c, of 2c times H(C), since the revolution is about the G-axis, times the
square root of [G′(C)]2 + [H′(C)]2. That is,

∫ 2c
0 2cH(C)

√
(3G/3C)2 + (3H/3C)2 3C, which is equal to∫ 2c

0 2c(1 + sin C) 3C.
Now, you integrate this. It gives 2c(C − cos C) as 1 gives C and sin C gives − cos C. This is to be

evaluated at 0 and 2c and subtracted. That simplifies to 4c2.
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This is how we are going to find the area of the surface of revolution when the curve is given
in parametric form. Basing on these three types of possibilities, we go for solving some problems.

Let us take the first exercise. Here, we want to find the lateral surface area of the cone,
generated by revolving about the G-axis the line segment H = G/2, where G varies between 0 and
4. If revolution is about the G-axis, then we need a function H = 5 (G). here, it is already given in
that form: H = G/2. So, we differentiate to get H′(G) = 1/2. The surface area will be the integral∫ 4
0 2cH

√
1 + [H′]2 3G. Now that

√
1 + [H′]2 =

√
1 + 1/4 =

√
5/2, and H = G/2, one 2 gets canceled,

and we have
∫ 4
0 c
√

52G 3G. It gives c
√

54G2 to be evaluated at 0 and 4, and then subtracted. That
simplifies to 4c

√
5.

The first exercise asks for obtaining the slant surface area of a right circular cone. The cone is
now given as a surface obtained by revolving the line segment H = G/2 for 0 ≤ G ≤ 4 about the
G-axis. Just go through the work-out. you will find that it confirms the old geometrical formula
half base into circumference into slant height.

Let us go to the next problem. The problem is to find the area of the surface generated by
revolving the portion of the curve H =

√
2G − G2 given by 1/2 ≤ G ≤ 3/2 about the G-axis.

(Refer Slide Time: 03:19)

Since the revolution is about the G-axis, we should find the formula with H as a function of G.
But that is already given. We should verify that the curve remains above the G-axis. That is also
satisfied since it is the square root of 2G − G2, it is always greater than equal to 0. We differentiate
to get H′ is equal to the derivative of

√
2G − G2 with respect to 2G − G2 multiplied by the derivative

of 2G − G2 with respect to G. That gives H′ = {1/[2
√

2G − G2]} × (2 − 2G) = (1 − G)/
√

2G − G2.
So, 1+ [H′]2 is equal to [(2G − G2) + (1− G)2]/(2G − G2), which simplifies to 1/(2G − G2). Then,

we get the area of the surface as the integral∫ 3/2

1/2
2cH

√
1 + [H′]2 3G =

∫ 3/2

1/2
2c

√
2G − G2 × [1/(2G − G2)] 3G =

∫ 3/2

1/2
2c 3G.
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This is 2cG
��3/2
1/2 = 2c(3/2 − 1/2) = 2c. You should verify these things. If there is some mistake,

then you correct it.
Let us take another problem. Find the area of the surface generated by revolving the portion of

the curve G = H3/2/3−√H where H varies from 1 to 3; and the revolution is about the H-axis. When
the revolution is about the H-axis, we need to express G as a function of H; and it is already given
that G is a function of H.
(Refer Slide Time: 07:38)

So, it is straight forward. We have to compute the derivatives and so on. Let us compute them.
And we should also verify that the curve lies above the G-axis. That means it should be greater than
equal to 0. But here, what happens is H3/2/3, when H varies from 1 to 3, is less than or equal to √H.
When H = 1, G = 13/2/3 −

√
1 = −2/3, and when H = 3, G = 33/2/3 −

√
3 < 0. Of course you can

see that throughout [1, 3], G = H3/2/3 − √H remains negative. That means, we should consider its
negative to get the correct area. Area will be anyway the integral of the modulus of that thing; so
we are assuming the integrand to be greater than or equal to 0. Here, we consider G equal to minus
of what is given; that is, G =

√
H − H3/2/3. Had you not taken it, we would have got a negative

answer; but it should be same in absolute value.
So, we consider this function G =

√
H − H3/2/3. If you differentiate it, you get G′ = (1/2)H−1/2 −

(3/2)H1/2 × (1/3) = (1/2) (H−1/2 − H1/2). Then,

1 + [G′]2 = 1 + (1/4) (H−1 + H − 2) = H−1 + H + 2 = [(1/2) (H−1/2 + H1/2]2.

Notice that we need the square root of 1 + [G′]2. Now that we have expressed it as a square, it is
easy to get its square root. Now, the surface area will be equal to the integral

∫ 3
1 2cG

√
1 + [G′]2 3H,

which is equal to
∫ 3
1 2c(H1/2 − H3/2/3) (1/2) (H−1/2 + H1/2) 3H. Multiplying out the factors and

simplifying, we get it to be equal to
∫ 3
1 2c(1+2H/3− H2/3) 3H. It gives 2c(H + H2/3− H3/9), which

is to be evaluated at 3 and 1, and then subtracted. Verify that it is equal to 16c/9.

3



Let us take one more problem. Find the area of the surface generated by revolving the curve
G = H4/4 + 1/(8H2), when H varies between 1 and 2, about the G-axis. Had it been about H-axis,
you would have done it directly. But now this surface is generated by revolving this curve about
the G-axis. So, you need to find H in terms of G. But that looks a complicated problem. Also limits
of H are only given; from which you may have to find limits for G.
(Refer Slide Time: 10:49)

Instead of going directly to that, let us compute 3B. It is anyway
√

1 + (3G/3H)2 × 3H. From
G = H4/4 + 1/(8H2), we get 3G/3H = H3 + (1/8) (−2)H−3 = H3 − 1/(4H3). Now,

1 + (3G/3H)2 = 1 + [H3 − 1/(4H3)]2 = 4H3 [1/(4H3)] + [H3 − 1/(4H3)]2 = [H3 + 1/(4H3)]2.

Then, 3B =
√

1 + (3G/3H)2 3H = [H3 + 1/(4H3)]2 3H. We can use this to get the surface area. But
since the revolution is about the G-axis, the surface area will be equal to the integral of 2cH3B.
where B is treated as a function of H so that the limits are for H. All that we have to do is apply the
unified formula with 3B instead of 3G or 3H. Notice that the limits for H are 1 and 2. So, the surface
area is

∫ 2
1 2cH 3B, which becomes

∫ 2
1 2cH[H3 + 1/(4H3)] 3H. We integrate this. The first term is H4

which gives H5/5; next one is 1/(4H2); that gives −1/(4H). So, it is 2c[H5/5 − 1/(4H)] evaluated
at 1 to 2. Verify that it simplifies to 253c/20.

Here we used is a trick. If we use the unified formula, it becomes easier. If you go directly, it
will be a bit complicated.

We go to Exercise 5, where we want to find the area of the surface generated by revolving the
given curve. The curve is given in parametric form: G = C +

√
2, H = C2/2 + C

√
2, where C varies

from −
√

2 to
√

2. And this curve is revolved about the G-axis.
The curve is given in parametric form; so you must get the derivatives. Now, 3G/3C = 1 and

3H/3C = C +
√

2. Then, we compute 3B, which is equal to
√
(3G/3C)2 + (3H/3C)2 3C. That gives

3B =

√
1 + (C +

√
2)2 3C. By expanding the square, we have 3B =

√
C2 + 2

√
2C + 3 3C.
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Since the revolution is about the H-axis, we can write the surface area as the integral
∫

2cG 3B
with limits for H. Remember, when you take the other formula in terms of H; it will be∫

2cG
√

1 + [G′]2 3H, where G is a function of H. Here, directly we get
∫

2cG3B. Is that al-
right? Because you can see that what happens in the earlier problem. You have taken

∫
2cH3B

when the revolution was about the G-axis. It is the same thing we are applying here. Though it is
given in terms of parameters; the formula is the same.
(Refer Slide Time: 15:23)

The integral will now be in terms of the parameter C, that is, B is a function of C now; so, the
limits of the integration will be from −

√
2 to
√

2. That is, the surface area is
∫ √2
−
√

2 2cG 3B(C). Now,
everything should be express in terms of C. Thus, the integral is equal to∫ √

2

−
√

2
2c(C +

√
2)

√
C2 + 2

√
2C + 3 3C.

How do we integrate it? The problem is C2 + 2
√

2C + 3. So, let us take that to be D. We substitute
D = C2 + 2

√
2C + 3. Then, 3D = (3D/3C) 3C = 2(C +

√
2) 3C. For the limits, see that when C = −

√
2,

D = 2− 2
√

2(−
√

2) + 3 = 1, and when C =
√

2, D = 2+ 2
√

2
√

2+ 3 = 9. Then, you can write the area
directly in terms of D. It is

∫ 9
1 2c
√
D 3D. That gives you c(2/3)D3/2 to be evaluated at 1 and 9; and

then subtracted. That simplifies to 52c/3; verify it.
Let us take one more problem, the last one. Find the area of the surface generated by revolving

the given portion of the asteroid. You have seen earlier that an asteroid has 4 petals. We have only
2 petals here, because G varies from −1 to 1. The asteroid is G2/3 + H2/3 = 1. The portion of the
curve which is to be revolved is is described by limiting G to −1 to 1. And this is revolved about
the G-axis. So, we should apply the formula directly.
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The equation yields H = (1 − G2/3)3/2, −1 ≤ G ≤ 1. Then, H′ = −G−1/3(1 − G2/3)1/2. You
get 1 + [H′]2 = 1 + G−2/3(1 − G2/3) = 1 + G−2/3 − 1 = G−2/3. The surface area is the integral∫ 1
−1 2cH

√
1 + [H′]2 3G =

∫ 1
−1 2c(1 − G2/3)3/2G−2/3 3G. However, the integrand is an even function,

so the integral is equal to 2
∫ 1
0 2c(1 − G2/3)3/2G−2/3 3G. This is to be integrated now.

To integrate we take 1 − G2/3 as D. Then, 3D = −(2/3)G−1/3 3G. For the limits, we see that
when G = 0, D = 1 and when G = 1, D = 0. So, the integral is equal to

∫ 0
1 4cD3/2(−3/2) 3D. This

gives 4c(−3/2) (2/5)D5/2, which is to be evaluated at 0 and 1, and then subtracted. Verify that it
simplifies to 12c/5.

We stop and declare that with this lecture the course is over. I hope you have enjoyed this
course.
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