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Transcendental and trigonometric Functions - Part 1

Well, this is lecture 4 of Basic Calculus 1. In the last lecture, we had introduced the notion
of function and then gave some examples. The examples were limited to the so called algebraic
functions; which means they were coming from the power function. And then, we discussed
rational functions, polynomial functions and so on.

Today we will be discussing more examples. They will include transcendental functions; of
course, that includes trigonometric functions, which are not explicitly algebraic. Once we have
discussed trigonometric functions, we will also discuss inverse of trigonometric functions. So, the
notion of inverse of a function also will be introduced. And then, we will discuss some properties
like increasing nature or decreasing nature of functions, and so on. So, let us start with our
examples.
(Refer Slide Time: 01:16)

First, we consider the exponential function. It is given as 5 (G) = 0G for some positive 0, a fixed
positive number 0. Recall that when you take the power function, it is of the form G0, where 0 is
fixed and G is the variable. Now, this is in the form 0G , where 0 is fixed and G is the variable. We
will assume that 0 ≠ 1 because it will be the constant function.

These are called the exponential functions, which are in the form 0G . In 0G , the variable G can
vary over the whole of set of real numbers. So, its domain is (−∞,∞), the whole of R, and its
co-domain is positive reals. 0G can never be 0, of course.
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Some examples are here. In H = 0G , when you take 0 = 10, you get the function H = 10G , which
is this yellow line. When you take 0 = 3, you would get H = 3G , which is your magenta line. And
when you take 0 = 2, the function is H = 2G shown in the blue one. If you take its reciprocal, which
is 1/0G . And this is same as 0−G , where G is replaced by −G. When 0 = 10, you get H = 10−G , which
is the yellow one on the second figure. Similarly, = 3−G gives you the magenta line in the second
figure. And, H = 2−G gives the blue one. That is how the curves look like when it is an exponential
function.

Look at their nature here. When G decreases, or it is going up in 10−G On the other side, when G
increases, 10G is also increasing. We will come back to increasing and decreasing properties later.
(Refer Slide Time: 03:40)

Now, let us take the inverse of this exponential function. We will write that as log G. Here,
H = log2 G. What is the meaning of this to the base 2? It says that when you take 0 to the power
log0 G, that will give you G. Similarly, when you take log0 0G , that also gives you G. That is how it
is the inverse of 0G . Their composition will give you the identity function. That is what it means.
In the expression 0log0 G , in order that log to be difined, G must be positive. So, the domain of 0log0 G

should be positive reals.
Of course, you get back any G from this. Let us see how this is behaving when G is less than 1

and when G is bigger than 1. If G > 1, you would get log0 G to be positive. When G < 1, you get
log0 G to be negative. It looks like the yellow one, where we have taken log5 G. Notice that if you
take 5 to the power G instead of G there, then you would get back G.

Similarly, everything has to be interpreted. The yellow one is really log10 and the black one is
log5, the magenta one is log3, and the blue one is log2. That is, how the curve should look like.
Look at them from the side of H-axis by just rotating by 90 degrees. That is, think of H-axis as the
G-axis, as the horizontal one. It will just look like your 0G curve.
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These are called the transcendental functions. They are not algebraic. And that includes all
exponential functions 0G , the logarithmic functions, which are inverses of power functions, and of
course, the trigonometric functions, which will come soon.
(Refer Slide Time: 06:18)

Let us take the trigonometric functions. As you know, we have the six trigonometric functions
such as cos G, sin G, tan G, sec G, cosec G and cot G. In the triangle, if you take this angle as your G,
then cos G is this length: base divided by hypotenuse. Here, this G is really measured in radians. It
is a real number, and unit is the radians now. With that cos G, you would get a curve like this. Its
plot looks like this. It decreases from 0 to c/2 to c, increases from c to 3c/2 to 2c and so on.

Similarly, sin G from 0 to c will be looking like this. It slightly looks like a parabola, but it is
not a parabole. It is not up to scale; in H-axis we have a scale different that in G-axis. If you take
both the scales same, then it will be looking a bit flatter, something like this. So, that is H = sin G.

If you take H = tan G, it is graph, say, from −c/2 to c/2, it will look this way. And the same
thing is repeated everywhere. But at −c/2, tan is not defined, it is not defined at c/2 also. Because
tan G = sin G/cos G shows that cos G becomes 0 at −c/2 and also at c/2. So, tan G is not defined at
these points −c/2 and c/2; and also at ±3c/2, and so on. That is, when G is in the form (2=+1)c/2,
tan G is not defined.

Now, look at H = sec G. There again, as sec G = 1/cos G, it is not defined at −c/2, at c/2, and
so on. Like tan G, it is repeating, though in a different way. So, this is repeating here, from 3c/2 to
5c/2. Similarly, if we look at H = cosec G, there is a shift from sec G; the shift is by c/2. You get
this way, just like there is a shift in sin and cos. Also, cosec G = 1/sin G. It is not defined whenever
sin G becomes 0. You can see that at 0 and c, sin G is 0. So, at 0 and at c, cosec G is not defined.
Similar thing happens for H = cot G = 1/tan G. The curve H = cot G looks like this.

Look at the domains. cos G has the domain as the whole of real number. sin G also has the
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whole of real number as its domain. But the domain of tan G has all real numbers except ±c/2,
±3c/2, and so on. Since sec G = 1/cos G, its domain is the whole of R except ±c/2, ±3c/2, and
so on. Except these points, everywhere else it is defined. Look at cosec G = 1/sin G. Except at 0,
±c, ±2c, and so on, it is defined everywhere else. Similarly, cot G is defined everywhere, except
the interger multiples of c.

Now, look at their ranges. cos G is always lying between −1 to 1. Its range is [−1, 1], the closed
interval minus 1 to 1, and its period is 2c. The pattern is the pattern is repeated in every interval of
length 2c. And, in sin G, you get the range similarly. It is [−1, 1], now the curve is shifted by c/2,
and the period is also 2c. Look at tan G. Its range is (−∞,∞). That is, every value is achieved, and
its period is c. Similarly, what is the range of sec G? It is 1/cos G and the range of cos G is [−1, 11].
When you take 1 by, it will exclude the numbers between −1 and 1. That means the open interval
(−1, 1) is excluded from R; that is its range. And the period of sec G is, of course, 2c. Now, when
you look at cosec G similarly, you get the same range excluding minus the open interval (−1, 1),
everything else is there. And in cot G, the range will be whole of real numbers, just like your tan G,
and its period is c. So, this is how the trigonometric functions look like.

These trigonometric functions provide nice examples of odd and even functions. We say that a
function 5 (G) is even, if 5 (−G) = 5 (G) for each G in the domain of 5 (G). The domain is the whole
of real numbers in case of cos G. There, 5 (G) = cos G satisfies cos(−G) = cos G; that is why it is an
even function. And, we say that the function 5 (G) is odd, if 5 (−G) = − 5 (G). You see that sin G
satisfies this condition; that is, sin(−G) = − sin G. So, sin G is an odd function.
(Refer Slide Time: 11:53)

Now, we look at the power functions or algebraic functions such as G= where = is an integer.
As we discussed earlier, G2 becomes an even function. Because, G2 = (−G)2. Similarly, G2= is an
odd function. But (−G)2=+1 = −G2=+1. So, G2=+1 is an odd function. Similarly, sec G will become

4



an even function. And all the other trigonometric functions are odd functions.
We will also have some inequalities, which you could have seen from the graph itself. First,

sin G always lies between −|G | to |G | for every G in its domain, which is real number. That is,
−|G | ≤ sin G ≤ |G |. Of course, both sin G and cos G have range as [−1, 1], the closed interval. So,
we get −1 ≤ sin G, cos G ≤ 1 for every G ∈ R.

We have another inequality which also becomes very helpful. That is, 1 − cos G lies between
0 and |G |. It is always positive because cos G is less than or equal to 1. So, 0 less than or equal to
this. And this of course needs something more, which we will see later. But this will be useful:
0 ≤ 1 − cos G ≤ |G |.

Then another useful inequality is: sin G ≤ G ≤ tan G for all G ∈ [0, c/2). Of course equality
happens only for G = 0; at each other point, it is less than. In general, sin G < |G | for any G ≠ 0.
(Refer Slide Time: 15:06)

Look at the idea of a function. While defining a function 5 , we said that for each element in
the domain, there is a unique value, in the co-domain, to which it associates. That mean whenever
0 = 1, 5 (0) = 5 (1), which we also expressed in the other way that 5 (0) ≠ 5 (1) implies 0 ≠ 1.
We will say that such a function one to one, if and only if, the reverse condition is satisfied; that is,
if 0 ≠ 1, then 5 (0) ≠ 5 (1). It means two different elements 0 and 1 cannot be mapped to the same
element on the other side. So, this kind of thing will never occur; two elements 0 and 1 will never
be mapped to the same element here. This condition when expressed as the other side implication
becomes more helpful in applications. An equivalent condition is: 5 (0) = 5 (1) implies that 0 = 1.
This is the condition for 5 to be one to one; 5 (G) becomes one to one if this condition is satisfied.
And of course, 5 is onto, if its range coincides with its co-domain; that is, every element in the
co-domain has been mapped. That is, the range of 5 must be equal to �, the co-domain.

5



(Refer Slide Time: 16:41)

We also find many more functions from the old ones. As we obtained the polynomials from
the power functions. We have taken the polynomials like 5 (G) is a constant, say 1; 5 (G) = G, the
identity function. From these you get another function such as 1 + G. Now we are giving a notation
for it. We will say that this is addition of two functions. If 5 is a function and 6 is a function with
same domain as that of 5 and the same co-domain as that of 5 , then you say that 5 + 6 is another
function, which at takes the value 5 (G) + 6(G) at G. It looks very trivial. It has to be read this way:
5 + 6 is a new function, whose value at G is equal to the old value of 5 at G plus the old value of 6
at G. So, that gives you the value of 5 + 6 at G, and that is how we define 5 + 6. When you take
5 − 6, it is again the −6(G) on the other side.

Similarly, consider the product. You can have another function which is 5 times 6, also written
as 5 6. Here, ( 5 6) (G) = 5 (G) × 6(G) For example, take 5 (G) = G, the identity function. Now,
( 5 5 ) (G) = 5 (G) 5 (G) = G2. That is why that is an example of this. We can also define their
division. We say ( 5 /6) (G) = 5 (G)/6(G) provided 6(G) ≠ 0 for any G, because we have to take care
of division by 0.

There is another way for obtaining new functions, which is called the composition. If 5 is a
function, 6 is also a function, then from G, we can first go to 5 (G). Then, 6 acts and we get 6( 5 (G))
here. That is how the composition looks like: first 5 (G) next 6(G). So, this is written as 6 ◦ 5 . As
you come to 6( 5 (G)) from G, we preserve this notation 6 ◦ 5 and not 5 ◦ 6. So, 6 ◦ 5 is a new
function with (6 ◦ 5 ) (G) = 6( 5 (G)). But its definition needs some condition to be satisfied. Since G
goes to 5 (G), this value 5 (G) must be in the domain of 6 so that 6 can carry it to the value 6( 5 (G)).
That means the range of 5 should be contained in the domain of 6; then only you can define this.
Thus we say: “provided the range of 5 is a subset of the domain of 6”.
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(Refer Slide Time: 19:59)

Your inverse function will come from this composition. How? You take a function, say 6 such
that 6 ◦ 5 is equal to the identity function and 5 ◦ 6 also should be the identity function. Notice
that 5 ◦ 6 is defined the other way: first 6 would work then 5 would work. So, in case, both 6 ◦ 5
and 5 ◦ 6 are equal to the identity function, we would say that 6 is the inverse of 5 .
(Refer Slide Time: 21:32)

Then, it is required that 5 is one-one and 5 is onto. Because, if you go from G to 5 (G), then 6
acts and it takes back to G; so it becomes the identity function. These two are the same. When you
come back from the other side, that should be defined as a function. If it is not one to one, then
there are two points to which it goes. Now that 6 acts and that becomes identity, that means these
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two have to be identified as same. Similarly, these are to be identified as same. That means, all
these are same, so that 5 has to be one-one.

Similarly, ‘on to’ also will come out. That means 5 −1 will be defined provided 5 is both one to
one and onto. If 5 is a function from � to �, then 5 −1 is defined from � to �; it is one-one and
onto. So, you just read the reverse arrows; it brings you back to the same G. We say that 5 −1(H) = G
if and only if H = 5 (G); that is the definition of 5 −1. But this can only be defined whenever 5 is
both one-one and onto.

Once 5 is one-one and onto, 5 −1 also becomes one-one and onto. The inverse function is
defined only for those functions and their inverses are also of similar type so that 5 becomes the
inverse of 5 −1. This is the way the logarithm log0 G and the exponential 0G were working. It is this
composition to which the inverse refers.
(Refer Slide Time: 22:23)

Suppose you take the trigonometric functions. Look at sin G for example. It has the domain
as the whole of real numbers, its range is minus [−1, 1], and it is periodic. It goes something
like this; the pattern is repeated. And then you look at the points −c/2 and c/2. At these points,
sin G achieves the values −1 and 1, respectively. That means the restriction of sin G to this domain
[−c/2, c/2] is a one-one and onto function with range as [−1, 1]. So, you can define its inverse.
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(Refer Slide Time: 23:16)

Its inverse is a function from [−1, 1] to [−c/2, c/2]; we write it as sin−1 G. So we say that
sin−1 G is a function from [−1, 1] onto [−c/2, c/2]. But how does it act? If you take H here, then
it goes to sin−1 H here in such a way that if this is your G, this becomes sin G, so H becomes sin G.
So, we say that sin−1 G is that number H in [−c/2, c/2] for which sin H becomes equal to G.

When you take sine of sine inverse, or sine inverse of sine, they become identity functions on
their respective domains. But, remember that sine minus 1, which we write as a superscript, as
sin−1 G is not same as sin G to the power −1, though we write 3−1 = 1/3. It is looking the same
way, something like sin−1 but it is different from (sin G)−1; (sin G)−1 is cosec G, but sin−1 G is not
cosec G; they are different. The inverse of sin G is inverse with respect to composition. Similarly,
you can define cos−1 G, tan−1 G, sec−1 G, cot−1 G and cosec −1G.
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