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Lengths of Curves - Part 1

This is lecture 35 of Basic Calculus - 1. We were discussing applications of integrals to
computing volumes of solids of revolution. Today, we will have another application, which is to
find the lengths of curves using integrals. Let us see how to do this.
(Refer Slide Time: 00:44)

First of all, we have to see what is a curve. What do you mean by a curve in the plane? Imagine
that you are drawing a curve in the plane and you are keeping your time; you will look at your watch.
Suppose you have started at time C = 0 and then go on drawing the curve. As C increases, these
points are drawn in the plane. So, any point on the curve can be thought of as having components,
one is the G component and the other is the H component. When C varies both these components
vary. So, you may think of them as functions, G(C) and H(C). Once a curve is there, we may think
of that as if it is given parametrically by G = G(C) and H = H(C).

Basically, it may not be the time C. For instance, G can be taken as time C itself, and H can be a
function of G, H = 5 (G). Here, G itself is taken as a parameter and H = 5 (G). In general, you can
think of some parameter C, and as C varies over some interval, you get these points: the G-coordinate
is a function of that parameter C and the H-coordinate is a function of that parameter C so that you
get the point (G, H). That is how the curve is drawn.

So, let us assume that � is a plane curve given parametrically by G = G(C), H = H(C). Both G(C)
and H(C) are functions over the interval [0, 1], where C varies over this interval. We also add some
nice properties. As time proceeds, it does not stop anywhere, unless C reaches that point 1. So, you
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may say that the derivatives G′(C) and H′(C) at any point C are not simultaneously 0. Of course, we
assume that the derivatives of G(C) and H(C) exist with respect to C.

We thus say that the functions G(C) and H(C) are smooth; that is, G(C) and H(C) are continuously
differentiable, and the derivatives are not simultaneously 0 at any C ∈ [0, 1]. With this assumption,
let us look at the curve. Wewant to find its length. Let us say that when C = 0, the point (G(0), H(0))
on the curve is the beginning point. And at C = 1, we have the end-point (G(1), H(1)). Look at the
blue curve in the picture. We want to approximate its length.

What do we do to approximate its length? We choose many points on the curve. And then any
small portion of that curve is approximated by the length of the straight line segment joining those
two points. Of course, there will be some errors in this. But as you see, when the points get closer
and closer, we will be committing less and less error. We are planning to use the idea of Riemann
sum; we make a partition of [0, 1] and then take the sum of all these lengths and finally, we take
the limit of this sum as the norm of the partition goes to 0.
(Refer Slide Time: 04:31)

Let us describe the details. We take a partition of the interval [0, 1] with points 0 = C0 < C1 <

· · · < C= = 1. The partition points C0, C1, . . . , C= correspond to the points %0, %1, . . . , %= on the
curve. That is, for each 8, the point %8 on the curve is simply (G(C8), H(C8)). The sum of the lengths
of these straight line segments will give us an approximation for the length of the curve.

How to get the length of the line segment joining %8−1 to %8? We have the points %8−1 =

(G(C8−1), H(C8−1)) and %8 = (G(C8), H(C8)). We need to find the length of the line segment joining
%8−1 to %8. You know that this length is the length of the hypotenuse of this right angled triangle.
It is the square root of [G(C8) − G(C8−1)]2 + [H(C8) − H(C8−1)]2. This is the length of the line segment.
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(Refer Slide Time: 05:22)

Before we take the sum, let us look at a convenient way of expressing this length. We know
that G(C8) − G(C8−1) is equal to G′(08) (C8 − C8−1) for some point 08 between C8−1 and C8. That is what
our mean value theorem for the differentials say. Since G(C) is continuously differentiable, we can
write like this for some 08 between C8−1 and C8. Same thing happens for the function H(C). By mean
value theorem, we say that H(C8) − H(C8−1) is equal to H′(18) (C8 − C8−1) for some 18 between C8−1 and
C8.

If instead of the mean value theorem, you use Cauchy mean value theorem, then you can take
some point 28 instead of possibly different points 08 and 18. That allows taking the same point for
both the functions simultaneously. However, we can manage with the usual mean value theorem.
We take possibly different points such as 08 and 18. Notice that G′(08) means the derivative of G(C)
with respect to C evaluated at 08. Similarly, H′(18) is the derivative of H(C) with respect to C evaluated
at 18.

Then what happens, the length of any line segment joining %8−1 and %8, is the square root of
[G′(08)]2+ [H′(18)]2×[C8−C8−1]2. Simplifying, we get the length as

√
[G′(08)]2 + [H′(18)]2(C8−C8−1).

We then take the sum of all these lengths to get this expression. This approximates the length of
the curve. Now, this sum looks like a Riemann sum. When the norm of the partition goes to
0, the maximum of the lengths C8 − C8−1 goes to 0. In that case, the sum will be the integral∫ 1

0

√
[G′(C)]2 + [H′(C)]2 3C. This is how we are going to define the length of a curve. We say that

this integral is the length up the curve.
Let us summarize what we have done. Suppose the curve is given in the form G = G(C), H = H(C),

where the parameter C varies from 0 to 1. Then its length can be expressed as
∫ 1

0

√
[G′(C)]2 + [H′(C)]2 3C.

Now, we take a particular case, where the curve is given as H = 5 (G). Once H is a function of
G, the parameter C is really G. That means G = C and H(C) = H(G) = 5 (G). Then, G′(C) = 1 and
H′(C) = 5 ′(G). So, the integral can be written as

∫ 1

0

√
1 + [ 5 ′(G)]2 3G.
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(Refer Slide Time: 09:50)

If you think of using the differentials, then
√
[G′(C)]2 + [H′(C)]2 3C is really

√
[3G/3C]2 + [3H/3C]2 3C,

where 3C cancels and you get
√
(3G)2 + (3H)2. When H is a function of G, say, H = 5 (G), as ear-

lier this differential gives
√

1 + [ 5 ′(G)]2 3G. To remind ourselves that the variable is now G and
not C, we may write that G varies from 2 to 3. Then, the length of the curve will be written as∫ 3

2

√
1 + [ 5 ′(G)]2 3G.

(Refer Slide Time: 13:10)

Let us use the differential notion again and see how does it look. The integrand, which
is integrated here can be thought of as a differential. We usually write

√
(3G)2 + (3H)2 as the

differential 3B, where B represents the length of the curve measured from the start point to the
current point along the curve. Then, it makes sense to write the total length as the integral of
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3B. Then, you can write the length of the curve in a simpler way. It is
∫ 1

0
3B(C). Notice that

by the fundamental theorem,
∫ 1

0
3B(C) = B(C)

��1
0
is simply the length of the curve. That is how

the differential form takes care of the length. To have a proper perspective, you may think of an
arbitrary point g. When C = g, B(g) is the length of the curve from C = 0 to C = g. That is, B(g) is
the length measured along the curve from the point (G(0), H(0)) to (G(g), H(g)). The differential
notation is useful when you want to express that length as a function of C. At any point C = g,
B(g) will be the length starting from the beginning of the curve, which corresponds to C = 0 to the
current point C = g. That is how this formula can be seen.
(Refer Slide Time: 14:49)

Again, if you look at the differentialway ofwriting the length, wemaywrite 3B =
√

1 + [H′(G)]2 3G =√
[G′(C)]2 + [H′(C)]2 3C. Suppose a point on the curve corresponds to C = U. Then, the length of

the curve from the start point to this point is written as B(U), and B(U) is equal to the integral∫ U

0
B(C) 3C. Now, if you want to express it in terms of G, then, writing C as G in the integral you

would get the same length as
∫ U

0
B(G) 3G. This is again equal to

∫ U

0

√
1 + [H′(G)]2 3G provided the

curve is expressed by H as a function of G. We can express the same length of the curve in various
ways. Similarly, if the curve is given by G as a function of H, then you can write a corresponding
formula, but we will come to it later.

So, how to interpret the integral with 3B? We can think of 3B as a small length on the
curve, say, this portion of the curve. Then, the total length is simply the integral of 3B. Now
that 3B =

√
(3G)2 + (3H)2, the same length can be written as the integral of

√
(3G)2 + (3H)2. To

emphasize, this is really 3G and this is 3H; so you may think of this hypotenuse as
√
(3G)2 + (3H)2.

That shows clearly that 3B =
√
(3G)2 + (3H)2. That means the length of the curve has been taken as

the limit of the sum of approximate lengths of the secants of the curve joining the close by points.
Anyway, these are just different ways of looking at the same formula. All that we have is the

direct formula. If the curve is given in terms of C and C varies from 0 to 1, then you can express
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its length as
∫ 1

0

√
[G′(C)]2 + [H′(C)]2 3C, where this prime means differentiation with respect to C. If

the curve is given by H as a function of G, where G varies from 0 to 1, then the length of the curve
is the integral

∫ 1

0

√
1 + [H′(G)]2 3G, where the prime denotes differentiation with respect to G.

Let us apply this to one of the examples. First of all, let us verify that the waywe have formulated
te length of a curve abstractly is really matching with that of some known curves. Suppose � is the
circle of radius A centered at the point (0, 1). We know that the length of � is 2cA . So, let us see
whether the abstract definition of length conforms to this or not.
(Refer Slide Time: 17:34)

To apply our formula, we have to express that circle in parametric form. Since A is the radius and
the G-coordinate of the center is 0, 1 is the H-coordinate of the center, we can write � in parametric
form by G = 0 + A cos C, H = 1 + A sin C, where C ∈ [0, 2c].

We can now verify directly. With G and H as parametrized above, we see that G2 + H2 = 02 + 12.
This is the square of the length joining any point on � to the center (0, 1), and that turns out to be
A2. So, the parametrization is correct. Alternatively, the parametrization of the circle with center
at the origin and radius A is G = A cos C, H = A sin C. Then shifting the origin to (0, 1) gives the
parametrization G = 0+A cos C, H = 1+A sin C. Here, C varies from 0 to 2c. So, this is the parametric
form of this given circle.

Then, we compute the length of the curve. For that, we need G′(C) and H′(C). As G = G(C) =
0 + A cos C, G′(C) = −A sin C. Here, the derivative of the constant 0 is 0, of cos C is − sin C. Similarly,
H′(C) = A cos C. So, [G′(C)]2 + [H′(C)]2. is equal to A2(cos2 C + sin2 C). It simplifies to A2 so that the
integral becomes

∫ 2c
0

√
A2 3C =

∫ 2c
0 2cA 3C = 2cA . So, it really confirms with whatever formula we

are having for the case of the circle. Let us take some more examples.
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(Refer Slide Time: 20:50)

Here is another example. Find the length of the curve H = 4
√

2/3 G3/2 − 1. Here, H is given
as a function of G. The curve is traced when G varies from 0 to 1. If you want to convert it to
parametric one, it will be G = C and H = H = 4

√
2/3 C3/2 − 1. So, our parameter C is G itself, when

H is a function of G. Therefore, G′(C) = 1, and H′(C) = 4
√

2/3 (3/2)C1/2. With G = C, we have
[G′(C)]2 + [H′(C)]2 = 1 + [3H/3G]2.

So, let us apply that directly. We need H′(G). Differentiating H with respect to G, we get
H′(G) = (4

√
2/3) (3/2)G1/2. This 3 gets canceled and this becomes 2

√
2G1/2. Then, the length of the

curve is the integral
∫ 1
0

√
1 + [H′(G)]2 3G. We have to take [H′(G)]2; that is equal to 8G. So, the length

of the curve is
∫ 1
0

√
1 + 8G 3G. Now, it is a matter of integration. In this integration, you substitute

D = 1 + 8G so that the integrand is D1/2 and 3D = 8 3G. Thus,
∫ √

1 + 8G 3G =
∫
(1/8)D1/2 3D. Its

integration gives (1/8) (2/3)D3/2 = (2/3) (1/8) (1 + 8G)3/2. And this is to be evaluated at 0 and 1
and subtracted out. It simplifies to 13/6.

So, that is how we are going to evaluate the length of curves.
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