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Rule of Substitution - Part 1

Well, this is lecture 29 of Basic Calculus 1. In the last one or two lectures we had covered
the fundamental theorem of integral calculus or we just said fundamental theorem of calculus,
and then discussed some of its applications to problems. Today we will be discussing the rule of
substitution, which greatly simplifies our work while doing integration of some functions. We will
see how does it work.
(Refer Slide Time: 00:48)

The first thing is that the rule of substitution does not come out of the blue. It comes from
the chain rule for derivatives. Recall that the chain rule says that if you have a composite function
like 6( 5 (G)), write that as G for simplification, then 3�/3G will be equal to 3�/35 times 35 /3G.
That is what the chain rule for derivatives says. Now, if you write in the prime notation it will be
(6 ◦ 5 )′(G) = 6′( 5 (G)) 5 ′(G).

We translate that into integrals. The function to be integrated is sometimes called the integand.
Suppose the integral is in this form

∫ 1

0
6( 5 (G)) 5 ′(G) 3G. The integrand here is 6( 5 (G) 5 ′(G). The

function to be integrated is 6( 5 (G)) 5 ′(G). It looks like the earlier chain rule, which looks like
36/35 × 35 /3G. Suppose we put D = 5 (G). Then, the integrand now is 6(D)D′.

These are all necessary conditions we need to put so that this composition would work. Let
D = 5 (G) be continuously differentiable on the closed interval [0, 1]. Since it is a continuously
differentiable function, it is continuous. Also, its range is assumed to be a closed bounded interval
I. Suppose 6 is also continuous on I. That means you have 5 that takes [0, 1] to I, and then 6
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takes � to R. The composite function 6 ◦ 5 is defined from [0, 1] to R. You can write 6( 5 (G))
as 6(D) as that may be easier to handle. Let us look at the second one. The indefinite integral∫
6( 5 (G)) 5 ′(G) 3G is equal to the integral

∫
6(D) 3D. This D is an abbreviation of 5 (G).

In terms of the definite integral, when you have the limits, the first left side has the limits for G
as 0 to 1, but on the right side you have the limits for D, which is 5 (G), as 5 (0) and 5 (1). That is
how they are related to the general. We will see in the proof how the chain rule is used to derive
these. It will be obvious from the proof.
(Refer Slide Time: 04:47)

So, let us try to prove this. We have 6(D); remember that 6 : � → R and we are writing 6(D) for
D ∈ �. We have 5 : [0, 1] → �; that is how it is. Now 6(D) is continuous; so it can be integrated.
As it is continuous on a closed bounded interval, we can write it as �′(D) for some function �.
This function � is a primitive or an anti-derivative of 6. We have �′(D) = 6(D).

Now, the chain rule gives 3�/3G = 3�/3D × 3D/3G. And 3�/3D = �′(D) = 6(D). Also,
3D/3G = 5 ′(G) since D = 5 (G). So, 3�/3G = 6( 5 (G)) 5 ′(G). We then use the fundamental theorem
of calculus to obtain

∫ 1

0
6( 5 (G) 5 ′(G) 3G =

∫ 1

0
3�/3G 3G. As � is a function of 5 (G), this is really∫ 1

0
3� ( 5 (G))/3G 3G. Since its integral is � ( 5 (G))

��1
0
, we get � ( 5 (1)) −� ( 5 (0)). Using D = 5 (G)

we could have written it as
∫ 5 (1)
5 (0) 3�/3D 3D, which is equal to � (D) from 5 (0) to 5 (1). However,

3�/3D = 6(D). So, it can be written as
∫ D= 5 (1)
D= 5 (0) 6(D) 3D. That is what our first thing to be proved:∫ 1

0

6( 5 (G)) 5 ′(G) 3G =
∫ D= 5 (1)

D= 5 (0)
6(D) 3D.

This is in the in terms of definite integrals. A similar thing happens for indefinite integrals. Let
us see. We can see how the limits are coming in an alternative way. As D = 5 (G), when G = 0,
D = 5 (0); and when G = 1, D = 5 (1). So, you can see directly that by taking the indefinite integral.
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We thus get ∫
6( 5 (G)) 5 ′(G) 3G =

∫
6(D) 3D.

But we can really take it as a rule and make a simplification instead of going through this compo-
sition. We can look at that in a different way, that is, by considering the differential.
(Refer Slide Time: 08:18)

Suppose D = 5 (G); that is what we have taken there. Now its differential is 3D = 5 ′(G) 3G. Then
in the indefinite integral

∫
6(D) 3D, you think of 6(D) as 6( 5 (G)). We just substitute 3D = 5 ′(G) 3G

here. You then obtain the formula
∫
6(D) 3D =

∫
6( 5 (G) 5 ′(G) 3G.

Everything matches because of the differential notation. In fact, it looks trivial. However,∫
q(G) 3G means it is the integration of q9G) with respect to G. Had we given a notation for “with

respect to G” as something other than 3G, then it would not have appeared so obvious. Thus, it
requires a proof. But after proving it we find that if we consider the differential, then this looks
obvious. We then find that instead of a notation for “with respect to G”, 3G is really the differential.
Once we accept this, then 3D becomes equal to 5 ′(G) 3G. Then, we can really substitute 3D for
5 ′(G) 3G in the integral. In that case, 6(D) becomes 6( 5 (D)) and we you get directly the formula
that we have proved in the theorem.

See, our notation in writing “with respect to G” in an integral as 3G now helps us. And, this
notation is consistent with the chain rule or the rule of substitution. That is why this is called the
rule of substitution, which is the chain rule for differentiation in disguise. And this enables us to
treat the notation 3G as the actual differential.

Since we are able to consider that as the differential, in 6(D) 3D, if you substitute D = 5 (G), then
that gives rise to the left hand side. Reason: the differential 3D becomes 5 ′(G) 3G. Of course, this
is the reason why this notation was adopted. These things are consistently going through when 3G
in an integral is considered as the differentials. We thus make it a rule and a mnemonic. Instead of
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using the theorem in that form always this will be a convenient form to use. We call this the rule
of substitution.

So, what do we have to do really? If you find somehow that the function in the integrand will
be simplified if you substitute D = 5 (G), then you substitute and see that for the limit of integration,
when G = 0, D = 5 (0) and when G = 1, D = 5 (1), and in that case 3D = 5 ′(G) 3G. Then, convert
the integral b

ag(f (x)) f ′(x) dx to
∫ 5 (1)
5 (0) 6(D) 3D and integrate to get the result directly. This is just

a magic of the notation, so to say, but we can use this as a mnemonic and continue with our
integration.
(Refer Slide Time: 12:23)

Let us take an example to see how the rule of substitution is applied. Here, we have to evaluate∫ 1
−1 3G2

√
1 + G3 3G. It looks difficult to do because we know how to integrate polynomials if there

are G to the power something and so on, but nothing more. We observe that 3G2 is the derivative
of G3, or, the differential of G3 is 3G2 3G. Also it is square root of 1 + G3, where the derivative of 1
is 0. So, instead of G3, we could have considered the differential of 1 + G3, which is again 3G2 3G.
It looks if we substitute D = 1 + G3 and apply the rule of substitution, then that would help us to
integrate. So, let us try that.

Substitute D = 1 + G3. With that substitution the differential 3D becomes 3G2 3G. We have to be
concerned about the limits. When G = −1, D = 1 + (−1)3 = 0 and when G = 1, D = 0 + 13 = 2.
So, the integral

∫ 1
−1 3G2

√
1 + G3 3G can be written as

∫ 2
0
√
D 3D. This will be easy to integrate. We

know its integration will be D1/2+1/(1/2 + 1), which is (2/3)D3/2. This is to be evaluated at 2 and
0 and subtracted. It simplifies to 4

√
2/3.

This is how the rule of substitution is used. Sometimeswhen you get experienced, wewill simply
start as follows. The term 3G2 3G is the differential of 1+ G3, so the integral is

∫ 1
−1

√
1 + G3 3 (1+ G3).

We look at the indefinite integral there and find that the integral is (2/3) (1 + G3)3/2. Since the
terms involve G, we use the same limits of integration and write that the integral is equal to
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(2/3) (1+ G3)3/2
��1
−1. And then that will simplify to 4

√
2/3. But follow this method after some time,

not now. For now, substituting will be easier instead of going directly through that.
Look at the corresponding indefinite integral. The indefinite integral will not have any limits. It

will be simply
∫

3G2
√

1 + G3 3G. When substitution is used it leads to
∫ √

D 3D+�, because indefinite
integrals will introduce a constant. When substituted back, that will give (2/3) (1+G3)3/2+�, as we
have seen. We have to remember that in the indefinite integral there can be an arbitrary constant. If
you know the indefinite integral, then using the limits of integration −1 to 1 can be used to evaluate
it. And this evaluation is in terms of G and not in terms of D. So, this is after a bit of experience. If
you can see the substitution, then you do not need to put that D = 1 + G3, but directly do it. As we
know, finally it simplifies to 4

√
2/3. Either way you can do it: by changing the limits for D or by

finding the integral in terms of G and use the limits 1 and −1.
(Refer Slide Time: 17:01)

Let us take another example. Evaluate the derivative with respect to G of the integral
∫ G4

1 sec C 3C.
We do not have a direct formula for integrating sec C. Had it been sec2 C, we could have got tan C.
But it is sec C 3C. Maybe, we have to use the fundamental theorem; but the fundamental theorem
says that derivative, that is, 3

3G

∫ G

0
, where as here we have the upper limit as G4. So, what do we do?

We can use the chain rule. If the integral is � (G), then 3�/3G = 3�/3G4 × 3G4/3G. Essentially,
we substitute D = G4, because that is where the trouble is and use the fundamental theorem. Now,
3
3G

∫ G4

1 sec C 3C = 3

3G4

∫ G4

1 sec C 3C × 3G4/3G. That is how it looks now. With our substitution, that is
equal to 3

3D

∫ D

1 sec C 3C × 3G4/3G. We can use the fundamental theorem, to get sec D times 3G4/3G.
That is equal to sec(G4) (4G3). So, you see we did not have to worry about what will be the this
integral; but since it was the differentiation of an integral we could do it with the rule of substitution.

Let us go to next example. Here, we have to evaluate
∫ c/2
c/4 cot \cosec 2\ 3\. It should strike

something. We have cot \, we have cosec 2\; we know that the derivative of cot \ is −cosec 2\. So,
we can introduce a minus sign and substitute D for cot \ so that the differential cosec 2\ 3\ will be
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−3D, if D is equal to cot \.
(Refer Slide Time: 19:17)

Let us try. Suppose we substitute D = cot \. Then you get the differential 3D = −cosec \ 3\.
And look at the limits. When \ = c/4, D = cot(c/4) = 1 and when \ = c/2, D = cot(c/2) = 0.
So our limits will be from 1 to 0; that is, the integral is written as

∫ 0
1 D (−3D). As the limits of

integration go from 1 to 0, you can change that with this negative sign. That will be
∫ 1
0 D 3D. Now,

can integrate this. It is D2/2 evaluated at 1 and 0, then subtracted. It gives the answer as 1/2.
This is how we will be using the rule of substitution. That will be more convenient than directly

doing. Sometimes if it is a bigger expression and we can see directly the substitution, then we
substitute rather than doing directly. That will minimize mistakes.
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