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This is how we obtain the integral of sec2 G as tan G. Of course, a “plus �” is there to get all the
antiderivatives. It will be helpful to know the derivatives of elementary functions and the properties
of integrals like the integral of a sum is the sum of integrals, and multiplication by a constant : etc.
These properties are easy to remember since they come of the properties of the derivatives.

If you take the derivative of : 5 (G), then it will be equal to : 5 ′(G). Now, if � (G) is an
antiderivative of 5 (G), then the antiderivative of : 5 (G) will be :� (G). So, that is behaving the
samewaywith respect tomultiplying a constant. Similar thing happens for addition and subtraction.
Suppose � (G) is an antiderivative of 6(G). Then, the derivative of � (G) is 5 (G) and the derivative
of � (G) is 6(G). As we know the derivative of � (G) +� (G) is 5 (G) + 6(G). It thus follows that the
antiderivative of 5 (G) + 6(G) is � (G) + � (G).

Together these two properties are called linear properties of the antiderivative. Remember that
the indefinite integral is the general antiderivative plus some constant �. In that case, we just write
it this way:∫

: 5 (G) 3G = :
∫

5 (G) 3G,
∫
( 5 (G) + 6(G)) 3G =

∫
5 (G) 3G +

∫
6(G) 3G.
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We know that similar properties also hold for the definite integrals. Suppose you are able to find
the indefinite integral, then you can get the definite integral by evaluating that at 1, at 0, and then
subtract them. That is how we will be obtaining the value of the definite integral.
(Refer Slide Time: 2:46)

Of course, we need some repository of “which functions give which integrals”. We know that
the derivative of G<+1 with respect to G is equal to (< + 1)G<. We write that in terms of integral
by bringing that (< + 1) down. We write that this as

∫
G< 3G = (1/(< + 1))G<+1. That is how this

first formula about the derivative is related to this indefinite integral. Of course, we should add a
constant. The formula so obtained is∫

G< 3G = (1/(< + 1))G<+1 + � for some constant �.

Recall that we have discussed this power function G< only for rationals<. So, in the above formula,
< is a rational number, but < ≠ −1, because < + 1 will then become 0. For < = −1, what will be
the answer? That will come from the logarithm function, because derivative of log G will be equal
to 1/G. From there it should come. But we have not discussed that yet. So, we do not discuss the
case < = −1 now. All that we remember is that for < ≠ −1, we can apply the above formula.

Similarly, if you differentiate sin(:G), then you would get − cos(:G) times the derivative of :G
with respect to G, which is : . Then,

∫
sin(:G) 3G = −(1/:) cos(:G) + �. To see whether it is all

right, all that you have to do is differentiate the right side and see that it matches with the function
to be integrated. Here, if you differentiate −(1/:) cos(:G) + �, you get sin(:G). So, we can write∫

sin(:G) 3G = −(1/:) cos(:G) + �. That is the indefinite integral. Obviously, : should not be
equal to 0 here. If : = 0, you just get �; the other term is gone.

Similarly,
∫

cos(:G) = (1/:) sin(:G) +� because the derivative of sine gives you cosine. And,
the derivative of tan(:G) is sec2(:G) times : . So, we divide by : and find that the derivative of
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(1/:) tan(:G) is sec2(:G). So,
∫

sec2(:G) 3G = (1/:) tan(:G) + �. Again, : should not be 0.
Similarly,

∫
cosec 2(:G) 3G = −(1/:) cot(:G) + �.

Since we know all these formulas for the derivatives, we are rewriting them in terms of indefinite
integrals.

Since the derivative of sec(:G) is equal to : tan(:G) sec(:G), we have
∫

tan(:G) sec(:G) 3G =

(1/:) sec(:G) + �. Similarly, the formula for the derivative of cosec G gives the integral:∫
cot(:G)cosec (:G) 3G = −(1/:)cosec (:G) + �.
We know that the derivative of sin−1 G is equal to 1/

√
1 − G2 for |G | < 1. Recall that sin−1 G is

defined for |G | ≤ 1. Then, we write that
∫

1/
√

1 − G2 3G = sin−1 G +� for |G | < 1. And at G = 1 the
function 1/

√
1 − G2 is not defined. As 1/

√
1 − G2 is defined for |G | < 1, we have the above formula

only for |G | < 1.
Similarly, tan−1 G has the derivative 1/(1 + G2). So, we write

∫
1/(1 + G2) 3G = tan−1 G +�. As

sec−1 G has the derivative as |G |
√
G2 − 1, we have

∫
|G |
√
G2 − 1 3G = sec−1 G + �. And this formula

is valid for |G | > 1 since G2 − 1 must be greater than or equal to 0.
These are the formulas, which will be helpful for us while evaluating the integrals. If you do

not remember some of them, you go back to the derivatives, see what their derivatives are, and then
you can just rewrite those in terms of integrals.
(Refer Slide Time: 7:13)

Let us solve some examples basing on this notion. In the first example, we want to find the
general antiderivative of 5 (G); that means the indefinite integral of 5 (G) = 3G−1/2 + sin(2G).It is
really 3/

√
G + sin(2G). What will be its general antiderivative? We go back to the property of

linearity and so on. You have the indefinite integral equal to 3
∫
G−1/2 3G +

∫
sin(2G) 3G. For

G−1/2, you apply the first formula G<, that is,
∫
G< 3G = (1/(< + 1))G<+1. This gives the integral
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of G−1/2 equal to [1/(−1/2 + 1)]G−1/2+1 = 2G1/2. Then, you find the function whose derivative is
sin(2G). You also know that the integral of sin(:G) is −(1/:) cos(:G). So, the integral of sin(2G)
is −(1/2) cos(2G).

Hence, the integral of 3G−1/2 + sin(2G) is 3 × 2G1/2 − (1/2) cos(2G). Of course, some arbitrary
constant might be there because it is indefinite integral. We simplify. This gives you 6

√
G −

(1/2) cos(2G) + �. That is the indefinite integral or the general antiderivative of this function.
This is how our formulas will be helpful, the formulas and the linearity property.
Let us go to the second one. Here, we want to find a curve (or the curve, since there exists only

one, that is what the question says) with slope of the tangent at the point (G, H) as 3G2. That means,
some curve is there, and you take any point G; then the slope of the tangent to the curve at the point
(G, H) is 3G2. Of course, as G varies the slope will be different. We need to find out such a curve
which also passes through the point (1,−1). So, we are going to solve a differential equation. But
this can be tackled through the indefinite and definite integrals.
(Refer Slide Time: 9:50)

What does it ask? Let us reformulate it. We want to find H = 5 (G) Its slope of the tangent at the
point (G, H), which is 5 ′(G), is given to be equal to 3G2. And it passes through the point (1,−1),
which means 5 (1) = −1. So, you have 5 ′(G) = 3G2 and 5 (1) = −1. We have to solve for H = 5 (G)
using these two things.

Since 5 ′(G) = 3G2, by the second fundamental theorem,
∫
G< 3G = (1/(< + 1))G<+1 =∫

5 ′(G) 3G, which is equal to
∫

3G2 3G. We know that the derivative of G3 is 3G2. So, this in-
tegral will be equal to G3 +�. for some constant�, some real number�. Now, 5 (G) = G3 +� for an
arbitrary constant �. We have to evaluate the arbitrary constant by using the constraint 5 (1) = −1.
When you take 5 (1), this gives on the left side, −1 and on the right side you get 13 +�. So, 2 = −2.
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Then, 5 (G) = G3 − 2.
That is how simple differential equations whose derivative is known and a point where the curve

passes, can be solved.
Let us go to another example. Here we are asked to calculate the area bounded by the curve

H = 6 − G − G2 and the G-axis. The picture is absent in the problem. We have to get that from it.
Sometimes it is helpful to see what is the curve. But, even if you do not have the curve, you can
still proceed analytically. We know that it is a parabola, an inverted parabola. It looks like this
H = 6 − G − G2. We want to find the area bounded by this curve and the x axis.

The curve intersects the G-axis at at least two points in order that an area is formed, and then
nothing else is required to get a region which is bounded by these two. We do not have the lines
G = 0 and G = 1 here. That means, wherever it crosses the G-axis, the area should come from there.
Of course, if you look at the figure, it is making clear that this curve is intersecting the G-axis at
two points. And, we want to find this area which is colored blue. In order to see what are those
points, we must find out first where does this curve crosses the G-axis.
(Refer Slide Time: 11:28)

When it crosses the G-axis, we have H = 0. So, when 6 − G − G2 is equal to 0? That is our first
question. In order to compute the area, we need to find the points of intersection; we want to find
G such that 6 − G − G2 = 0. This can be factored as −(G + 3) (G − 2). So, (G + 3) (G − 2) = 0. That
gives you the two points where the curve crosses the G-axis. They are the points (−3, 0) and (2, 0).
These two points are really our lines G = −3 and G = 2 if you go back to the general setup. We want
to find the area bounded by this curve, the G-axis and the lines G = −3 and G = 2.

And you see this is a bounded area, the other one will go unbounded, right? It will go this way;
so, that is the unbounded area, and this is the only bounded area. We want to find this blue colored
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area. Then it will be the integral from −3 to 2 as earlier of the given 5 (G); and that is the area.
We have to see that it is the area; an area should be always non-negative. So, this curve in the

picture lies above the G-axis. It has to be non-negative. But then we have to see it analytically also.
Let us take any point G between −3 and 2. We see that (G − (−3)) is positive and G − 2 is negative.
That means the (G + 3) (G − 2) is negative. It maybe equal to 0; it is so at these two points. Our
curve is minus of this thing; so that should be greater than or equal to 0. That means for any G
inside the [−3, 2], 6 − G − G2 ≥ 0. Of course, it is greater than 0, if G ∈ (−3, 2); it is so except the
points −3 and 2. If G is in between −3 and 2, but not equal to them, then it is positive, and at these
points, it is equal to 0. So, we write 6 − G − G2 ≥ 0. for any G ∈ [−3, 2]. That means the curve lies
above the G-axis. And when you take the area bounded by this and the G-axis, automatically that
area becomes positive, even if you cannot compute the definite integral.
(Refer Slide Time: 16:20)

Now, the area will be equal to the definite integral. The required are is equal to
∫ 2
−3(6−G−G

2) 3G.
It is not from 2 to −3; that will be negative of that, it is from −3 to 2. In fact, our area should be
coming like

∫ 2
−3 |6− G − G

2 | 3G. If it is from 2 to −3, then the function under the integral sign should
be −|6 − G − G2 |. Now, |6 − G − G2 | = 6 − G − G2; so that is the area.

We need to evaluate this integral. Notice that if you differentiate 6G, you get 6. So, the integral
of 6 should be equal to 6G. And when you differentiate G2/2, you get G. So, the integral of G is G2/2.
Similarly, if you differentiate G3/3, you get G2. So, the integral of G2 is G3/3. Using the linearity
property, we obtain the integral as 6G − G2/2 − G3/3.

And the connection between definite and indefinite integral is, whatever indefinite integral
you get it should be evaluated at −3 and 2 and subtracted. In fact, you should get plus � in the
indefinite integral, but that � will get canceled, because when you evaluate at −3, you have one
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�, and when you evaluate at 2, that � gets canceled. So, we need to evaluate this expression
� (G) = 6G − G2/2 − G3/3 at 2 and subtract from it the evaluation of � (G) at −3. So, we obtain

� (2) − � (−3) = 6(2) − 22/2 − 23/3 − [6(−3) − (−3)2/2 − (−3)3/3.

If you simplify it, it will turn out to be 125/6. Here it so happens that the curve is equal to | 5 (G) |.
So, it is the actual area. In general,

∫
5 (G) 3G gives the signed area and the actual area is

∫
| 5 (G) 3G.

These two happen to be same here because the function itself is lying above the G-axis.
This is how we will be computing signed areas and actual areas. Let us stop here.
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