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Definite Integral - Part 1

This is lecture 25 of basic calculus 1. Till now we are concentrating on very important
applications of the notion of limiting concept. Limiting concept is of course, the most fundamental
thing to Calculus. Using this we have discussed continuity and then differentiation of functions.
Today we will be starting the third important aspect which also bases on the limiting notion; it is
called integration.
(Refer Slide Time: 00:53)

As it is told, integration is the inverse process or reverse process of differentiation. This is
the sense. Suppose 5 (C) is a function defined on the closed interval [0, 1]. If we can write 5 (G)
equal to derivative of some other function, say, � (G), then what could be this new function � (G)?
This is how it is called the reverse process of differentiation. In differentiation � (G) is given, you
differentiate and obtain something as small 5 (G). Here we are given 5 (G) and ask “what should be
� (G) such that the derivative of � (G) will be giving us 5 (G)?”; that is the idea.

So, G is any point in the closed interval [0, 1]. The functions 5 (G), � (G) and �′(G), the
derivative of � (G) should be defined there, and �′(G) should be equal to 5 (G). Look at the picture.
Suppose 5 (G) is given. Let us say it is the C-axis, and we have H = 5 (C). We choose any point
G here. We want to find � (G). where this height is 5 (G). Now, what do we guess? Suppose we
consider � (G) as the area under the graph of H = 5 (C), the C-axis, and the lines C = 0 and C = G. It
is this area which is painted blue here. Suppose that is equal to 5 (G). Then 5 (G + ℎ) will be equal
to that plus this pink area. Now, that is � (G + ℎ). If you take � (G + ℎ) − � (G), that will give this
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pink area. Think of this area divided by this ℎ. It is some average value of the heights. And when
this ℎ becomes smaller and smaller, we may say that we reach the height 5 (G). That is the intuitive
notion behind getting this function � (G).

So, we guess that � (G) should be the area under the graph of H = 5 (C) and the lines C = 0 and
C = G, which is painted blue here. That area should be � (G) because that matches with our intuition.
If you take 5 (G + ℎ) − 5 (G) divided by ℎ, then that is approximately equal to the height, which is
the value 5 (G).
(Refer Slide Time: 4:32)

Now, a new question arises. How to find the area of this region? Suppose we say that there
is some area. Then first of all 5 must be a bounded function. If it is unbounded, then the area
becomes ∞, right? That will not help us; it will not be a real number, and we cannot write 5 (G)
since that is ∞. So, we assume that 5 (G) is a bounded function. But we are trying to find the
function � (G). In fact, we will put some further restrictions, because in applications we get usually
that kind of functions; so, that will be sufficient for our purpose.

Suppose 5 : [0, 1] → R is a bounded function. In the picture, it is 0 and this is ℎ and that is
our 5 (G). The problem is, how to approximate this area under the curve H = 5 (C) bounded by these
two lines? How do we approximate this area? Instead of G, we can take 1; that does not matter if
that fixes the idea. How do we approximate this area if we cannot find it exactly?

What do we guess? If we take this rectangle from 0 to 1, then that is also an approximation of
this area. But a better approximation will be obtained if we divide that into two sub intervals and
now take the sum of these two areas. It is some 2, so that we get one rectangle with 0 to 2 and
another from 2 to 1. We may think of approximating the area under the curve by the sum of these
two. Intuitively, if we go on subdividing this interval [0, 1] with smaller and smaller sub-intervals,
then on each of the sub-intervals we compute that rectangle, and add them. That will be a better
approximation when these sub-intervals are smaller and smaller. That is the idea.
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To capture this notion of sub-intervals, we have to choose some points here. The set of those
points is called a partition. So, we are defining it formally now. We should try looking at the
partition itself. A partition of [0, 1] is set % which is {G0, G1, G2, . . . , G=}, where 0 = G0, 1 = G=

and other points are chosen between 0 and 1 with this ordering. We have G= − G0 = 1 − 0. That
means, you have 0 which is G0, then G1, then G2 and so on so that G= is 1. After this, we have to
do something with this =. We want the sub-intervals to be smaller and smaller. Then this would
introduce a limiting process so that we may get this area.
(Refer Slide Time: 7:44)

Since we want the sub-intervals to be smaller and smaller, and in fact their lengths should be
close to 0, we define the norm of the partition. The norm of % is the maximum of the lengths of
those sub-intervals. If that maximum goes to 0, then the lengths of all these sub-intervals will also
go to 0. That is why we are defining this norm. So, let us call ‖%‖ as the norm of the partition %,
which is really the maximum of G8 − G8−1. We see that this partition divides the interval [0, 1]. And
where from a rectangle will come within this sub-interval [G8−1, G8]? You may take the area of this
rectangle as 5 (G8) (G8 − G8−1). In general, we will choose another point 28 in between G8−1 and G8
and take the area 5 (28) (G8 − G8−1).

This rectangle obtained by choosing a point 28 in between G8−1 and G8 is the area of the
rectangle limited to this sub-interval [G8−1, G8]. We will say that this area of the rectangle somehow
approximates the area under the curve H = 5 (C) bounded by the lines C = G8−1 and C = G8.

We will give a name to the set of all these chosen 28s. We will call it a choice set. This is
non-standard; but it will be very helpful to fix the notion. Let us call this set � = {21, 22, . . . , 2=}
as a choice set. A choice set consists of points from each of the sub-intervals; that is, 28 should be
in between G8−1 and G8. Then, we form the sum of all those rectangles. The area of the rectangle in
the interval [G8−1, G8] is 5 (28), which is this height at 28 times the length of the sub-interval, which
is G8 − G8−1. Then, you take the sum of all these things. This sum is thought to be an approximation
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to the area under the curve. Let us give a notation. We call this sum the Riemann sum of 5 for the
partition % and the choice set �; and we write it as (( 5 , %, �).

This (( 5 , %, �) will depend on the function 5 , the particular partition %, which is defined by
the particular points G8, the break points that make the sub-intervals and it also depends on the
choice points. It is really the sum of the areas of the smaller rectangles, and we call it the Riemann
sum. Our idea is, this is an approximation to the area, and this will be equal to the area when each
of these lengths G8 − G8−1 goes to 0. In that case, the norm of % will go to 0, since it is the maximum
of those lengths. And when ‖%‖ goes to 0, each of these lengths will also go to 0. And that is
exactly our definition of the area.
(Refer Slide Time: 11:38)

Let us look at the picture to fix the idea. You have the interval [0, 1]. You get the sub-intervals
by taking these points of the partition. Inside each of these sub-intervals, you have chosen points
28 and then found out the area of the rectangle with the height as 28 and base as G8 − G8−1; then you
take the sum of all those areas of rectangles; and you think of that sum as an approximation to the
area bounded by the curve H = 5 (G), the G-axis and the lines G = 0 and G = 1.

See, it might happen like this, because it need not always be lying above the G-axis, the curve
can be below the G-axis. So, when you take this region, it might give rise to two different regions
and we are taking their sum. Now, what is the area of the region bounded by the curve, the G-axis
and those two lines? That will be the limit of this Riemann sum (( 5 , %, �) as ‖%‖ goes to 0,
provided it exists. There can be some curves where area does not exist. We are assuming that
possibility here.

We will give it a name. Whenever this limit exists, we say that the function 5 (G) is Riemann
integrable or just integrable. Here, the limit of the Riemann sum should exist when ‖%‖ goes to 0.
When ‖%‖ → 0, it will mean that each length of these sub-intervals, that is, G8 − G8−1 will become
smaller and smaller and it will approach 0. So, it assumes that whatever choice point 28 you choose
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in between G8−1 and G8, the limits would exist.
For each choice set you will get an approximation. But whatever choice points you choose,

when the norm of the partition goes to 0, this limit must exist. That is the condition of Riemann
integrability. If that limit exists, we say that the function is Riemann integrable. And we will
identify that limit with the area. That is exactly our definition.
(Refer Slide Time 14:16)

We say that if the limit of (( 5 , %, �) exists as ‖%‖ → 0, then that value of the limit will be the
area. What is the meaning of this limit exists when norm % goes to 0? It simply means that the
limit must be a real number ℓ. Then, this limit exists means the absolute value of the difference of
this Riemann sum from ℓ can be made as small as possible by choosing our partition % with the
condition that ‖%‖ goes to 0.

Abstractly, we can define it this way: there exists an ℓ, which will be the limit of that Riemann
sum, if corresponding to each n > 0, there exists a X > 0 such that whenever ‖% | | < X, we should
see that the difference between these two quantities is less than n . It is just like the definition of
limit of functions defined earlier.

If this condition is satisfied, we would say that the function 5 is integrable. Of course, its
integral will be that ℓ. We will give a name to this ℓ. We will call that as the definite integral
or the Riemann integral of 5 (G). And we will denote that limit as

∫ 1

0
5 (G) 3G. The integral

is from 0 to 1, and we write these 5 (G) 3G as a notation. The definite integral is equal to
the limit of the Riemann sum (( 5 , %, �) when ‖%‖ → 0. It is the same thing as telling that∫ 1

0
5 (G) 3G = lim‖%‖→0

∑=
8=1 5 (28) (G8 − G8−1).

This will be our definition of the integral, which is actually the area under the curve = 5 (G), the
lines G = 0, G = 1, and the G-axis. In fact, this is the signed area. Why signed? You can see from
the previous picture where 5 (G) is negative right up to this point. All these areas will give you (not
exactly areas in our geometric sense) negative sign. Suppose this length is 2 and this height is 3.
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Then you get −6 because this height is 5 (28) = −3. So, you get −6; thus it is really the signed area;
it is not exactly the area. That means, we have defined the signed area of the region between the
graph of H = 5 (G), the G-axis and the lines G = 0 and G = 1.

If you want to get the correct or exact area, you have to take
∫ 1

0
| 5 (G) 3G; that will give us the

geometric area. That is what the actual area is; it is equal to the integral of | 5 (G) | from 0 to 1. The
logic is that the earlier negatives will become positive now so that we get the actual area.
(Refer Slide Time 18:10)

Once this definite integral is defined, we should see how it is applied. And then slowly we
will come to some other conditions which will imply that the integral exists. It is easy to see what
should be the conditions. You see that the limit of the Riemann sum exists for all possible choice
of 2, that is what our result is. With whatever partition you choose, once the norm of the partition
goes to 0, whatever choice set � you choose, it should give us a limit.

Now, our 5 (G) was assumed to be bounded. Therefore, in each of these sub-intervals, 5 (G) is
again bounded. So, it has a maximum and it has a minimum. Then, in this sub-interval [G8−1, G8],
the term 5 (28) (G8 − G8−1) will lie between the maximum of 5 (28) times (G8 − G8−1) and the minimum
of 5 (28) times (G8 − G8−1). Let us write "8 = max 5 (G) and <8 = min 5 (G) where G ∈ [G8 − G8−1].
Then, <8 ≤ 5 (28) ≤ "8. Therefore, the Riemann sum (( 5 , %, �) lies between the other two sums
where we replace 5 (28) with <8 and "8.

Notice that if the minimum is achieved somewhere, say, at some C8, then you can choose this
28 as C8. In that case, the Riemann sum (( 5 , %, �) will be the smallest among all Riemann sums.
Similarly, if the maximum is achieved at some points, we can choose the points 28 to be those
points. And then the Riemann sum will be the maximum of all Riemann sums. We will give some
names to these two particular sums. We will call this left side as the lower sum and the right side
as the upper sum. So, the Rieman sum lies betwen these two, the loer sum and the upper sum. In
particular you can choose 28s so that the Rieman sum is equal to the lower sum, and you can choose
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possibly different 28s so that the Riemann sum is equal to the upper sum.
(Refer Slide Time 21:08)

So, it may look something like this. Suppose inside the interval G8−1 to G8, the curve is going
like this. Your G8 is a point where this 5 (28) is maximum, as in this picture. When you come to
the other side, for example here, it is maximum at this place not at this place. So, if 28 is chosen
between these two, then its maximum will be at the left point. Well, whether left or right, we do not
know, but there is some point where it is maximum. Here you see on the other picture that the 28 is
taken to be minimum. Then, you get these rectangular areas while you computing the minimum.

So, the lower sum is
∑=
8=1<8 (G8 − G8−1 and the upper sum is

∑=
8=1 "8 (G8 − G8−1. These <8 and

"8 may correspond to some particular choices of 28. When 5 (G) is integrable, this lower sum
and the upper sum should exist. Because for every choice of 28 the limit should exist; and these
are particular choices. When you take the limit, both must be equal to the integral

∫ 1

0
5 (G) 3G.

So, when both the limits exist and they are equal due to our inequality that the Riemann sum lies
between the lower and upper sums, the Riemann sum in the limit must exist and that should be
equal to this integral

∫ 1

0
5 (G) 3G, which is ℓ. Fine. That would say that 5 (G) is integrable if and

only this integral exists, if and only if the limit of (( 5 , %, �) is equal to ℓ, if and only both the lower
sum and upper sums give the same limit.

The last condition of integrability means: the lower sum and the upper sum have the same limit
ℓ. It can be written in a better way without bringing in this ℓ. It is simply the condition that the
limit of their difference is 0. That is, the limit of

∑=
8=1("8 − <8) (G8 − G8−1) as ‖%‖ → 0 must be 0.

Sometimes if we are not able to compute the integral correctly, we can at least show by using this
method that the function is integrable.
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