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Let us look at the error of linearization. The error was coming from ΔH − 3H. As in the earlier
example it was 0.1c at the point G = 10. This error in approximating ΔH with the differential 3H
at a point G = 0 is ΔH − 3H. Now, ΔH is equal to the increment in H, which is 5 (0 + ΔG) − 5 (0)
and the differential 3H is 5 ′(0) ΔG. Combining them together we find that the error is equal to
[
(
5 (0 +ΔG) − 5 (0)

)
/ΔG − 5 ′(0)

]
ΔG. If we write this bracketed thing as n , the error is really n ΔG.

When ΔG goes to 0 what happens to this n? We know that the limit of
(
5 (0 +ΔG) − 5 (0)

)
/ΔG −

5 ′(0) is equal to 0, because the limit of this is equal to 5 ′(0). That means the limit of this
expression, which we write as n is equal to 0 when ΔG goes to 0. You see that the error is of a bit
higher order than ΔG; it is equal to something times ΔG so that when ΔG go to 0, that something
also goes to 0.

So, the error is something of higher order than ΔG; it is not just linear like ΔG. It can be (ΔG)2

or something like that. The error is n ΔG, where the limit of n is 0 as ΔG → 0. That is how the error
looks like.

Look at the figure. Suppose you have the curve H = 5 (G). At at the point G = 0, which we write
G0 here, we have the point (G0, 5 (G0)) on the curve; it is the blue one. And, we have a tangent at
that point (G0, 5 (G0)) which is the pink one. We have the point (G0 + ΔG, 5 (G0 + ΔG)) on the blue
one. The height there is 5 (G0 + ΔG). If you look at this point, the corresponding height is 5 (G0).
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The difference between those heights is the increment in 5 at the point G0. And what is 35 ? It is
really 5 ′(G0) times the increment, where 5 ′(G0) is the slope of the tangent. This slope is this height
divided by this 3G. When you multiply that with 3G, you would get 35 ; this 35 is really this height,
this much. All that we say here is that the error which can be expressed as n times 3G or ΔG where
n goes to 0 as ΔG goes to 0. When you plot in the graph, this is how the error looks like.
(Refer Slide Time: 3:46)

We can apply this notion or this concept of differential to give another proof of the Chain rule.
We have already proved that. Now we can give another proof of the same Chain rule using this
notion of differential. Recall what the chain rule says. Suppose 5 (G) is differentiable at the point
0, 6(C) is another function, which is differentiable at 5 (0). Here, 5 goes somewhere, then g goes
somewhere. The function 5 is taking 0 to 5 (0); now 6 works and it takes 5 (0) to 6( 5 (0)). It is
assumed that 5 is differentiable at 0 and 6 is differentiable at 5 (0). We want to find the derivative
of 6 ◦ 5 at 0; that is really the chain rule. As we know, (6 ◦ 5 )′(0) = 6′( 5 (0)) 5 ′(0). We want to
show that this new function H = 6( 5 (G)) is differentiable at G = 0, and its derivative at G = 0 is
equal to 6′( 5 (0)) 5 ′(0). That is what the chain rule says.

And here goes the proof. We write D = 5 (G) just for notational convenience. Then, ΔG is the
increment in G and ΔD is the increment in 5 at that point 0. Write H = 6( 5 (G)) and the increment
in H as ΔH. As we have seen earlier with the error analysis of linearization, you can write the
increment in D as ΔD =

(
5 ′(0) + n1

)
ΔG, where the limit of this n1 is equal to 0 when ΔG approaches

0. Is that clear?
We can write this error equal to this times delta G plus this. So, ΔH can be written as(

6′(D) + n2
)
ΔD at D = 5 (0). Use that now. We can write ΔD =

(
5 ′(0) + n1

)
ΔG where the limit of

n1 is equal to 0. What about ΔH? Now, H = 6( 5 (G)) and we are taking its increment at 5 (0). So,
ΔH =

(
6′( 5 (0)) + n2

)
ΔD, where ΔD is the increment in D and the limit of n2 is 0 as ΔG goes to 0.
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Now, we plug in the earlier expression here to obtain

ΔH =
(
6′( 5 (0)) + n2

)
ΔD =

(
6′( 5 (0)) + n2

) (
5 ′(0) + n1

)
ΔG.

Divide this expression by ΔG and see what happens. One expression is 6′( 5 (0)) + n26 and another
is 5 ′(0) + n1. Then, ΔH/ΔG is equal to the product of these two underlined factors. And then you
take the limit as ΔG → 0. That gives 3H/3G on one side; and we look at the other side. On the other
side, taking the limit as ΔG goes to 0 gives the product of two limits. As ΔG → 0, both n1 → 0
and n2 → 0. So, in the limit the product becomes 6′( 5 (0)) 5 ′(0). So, the answer is now obtained
directly. This is a simpler way of looking at the chain rule using the notion of differential.
(Refer Slide Time: 8:02)

Let us take some problems basing on this idea. We want to find the linearization of the function
G1/3 at the point G = −8. What we do is, we differentiate and then compute the necessary functional
values 5 (−8) and 5 ′(−8), and then use the linearization. As 5 (G) = G1/3, 5 ′(G) = (1/3)G−2/3. And
when we substitute, we get 5 ′(−8) = (1/3) (−8)−2/3. Now, (−8)−2/3 is equal to (−2)−2, which is
1/4. So, 5 ′(−8) = 1/12. That is 5 ′(−8). And, what is 5 (−8)? It is 5 (−8) = (−8)1/3 = −2. So,
you get the linearization of 5 (G) as 5 (0) + 5 ′(0) (G − 0), which is 5 (−8) + 5 ′(−8) (G − (−8)). It is
equal to (−2) + (1/12) (G + 8). It simplifies to G/12− 4/3. So, the linearization is G/12− 4/3. That
means near G = −8, you can approximate the function G1/3 with this linear expression G/12 − 4/3.

Let us take the second problem. Here, we have the function as 5 (G) = sec G. We want to
find its linear approximation at G = −c/3. Again, we proceed the same way. As 5 (G) = sec G,
5 (−c/3) = 2. Now we go for its differentiation. We get 5 ′(G) = sec G tan G. We then evaluate it
at −c/3 to get 5 ′(−c/3) = sec(−c/3) tan(−c/3) = 2 × (−

√
3) = −2

√
3. Then the linearization is

5 (0), which is 2 plus 5 ′(0), which is −2
√

3 times G − (−c/3). It simplifies to 2− 2
√

3(G + c/3). It
says that in a small neighborhood of −c/3, if you choose any G, then the difference between sec G
and this 2 − 2

√
3(G + c/3) will be very small. That is the notion of this linearization.
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(Refer Slide Time: 10:09)

Let us take another problem. Here, we are finding the differential. Given that 2H3/2 + GH− G = 0
find the differential 3H. That means the function is implicitly defined. The implicit definition of
H = 5 (G) is given by this equation, and wewant to find the differential. As you know, the differential
is equal to 5 ′(0) times the increment in G. And what is this 0 here? Given any 0, you can find
the differential. Of course when 0 changes, the value of the differential may change. So, we are
suppressing this 0 in our notation.
(Refer Slide Time: 11:43)
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If nothing is asked, that means we need to compute the differential at an arbitrary point 0. Since
0 is arbitrary, you take G itself as an arbitrary point. The question is, what is the differential at the
point G? Fine.

Okey, let us proceed. First thing is we have to find the derivative. What is H′? You differentiate
the expression itself using implicit differentiation. Differentiating H3/2 gives (3/2)H1/2 times H′;
differentiating GH gives GH′ + (3G/3G)H = GH′ + H. So, you get 2(3/2)H1/2H′ + (GH′ + H) − 1 = 0.
Solving this, we should get our H′. Fine. That gives (3√H + G)H′ = 1− H, or H′ = (1− H)/(G + 3√H).
And then at any arbitrary point G, the differential of H will be equal to this times 3G; that is what it
is. So, 3H = [(1 − H)/(G + 3√H)] 3G.

What does this differential do? It is really an estimate of ΔH, the increment in H at any point G
by a linear function, called linearization. But it is not exactly ΔH; 3H is nearby that ΔH; that is what
this differential means.
(Refer Slide Time: 15:48)

Let us go to the next problem. We have the function 5 (G) = 1/G. We want to approximate the
increment Δ 5 at any point G with the differential 35 . But we are telling that it is not taken abstractly
at any point, but at some particular point, say it is at G = 0 = 0.5 That means you have the point
G = 0 for this function, where 0 = 0.5. We say that this point changes to 0.6, which means your ΔG
is equal to 0.6− 0.5 = 0.1. With this ΔG, we need to find 35 , find Δ 5 and then take their difference,
which is, the error in approximation. We want to approximate or find out this error. You can really
find out exactly the error at G = 0.5. Fine.

We have 5 (G) = 1/G. We take its derivative, which is −1/G2. With 3G = 0.1, we have
Δ 5 = 5 (0.6) − 5 (0.5). When you substitute you get 1/0.6 − 1/0.5 = −1/3. And what is
35 ? It is equal to 5 ′(0) times the increment in G, which is 5 ′(0.5) × 0.1. You substitute to get
−1/(0.5)2 × 0.1 = −2/5.
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(Refer Slide Time: 16:10)

Then what is the error? The error is the difference Δ 5 − 35 , which gives you −1/3 − (−2/5) =
1/15. Since it is the reciprocal, the reciprocal is linearized and is not a really good approximation.
This is what it shows. This difference should go to 0 as our difference between these two points
goes to 0, The difference in G is 0.1, but you get this difference as 1/15. It is almost of the same
order as XG; it is not varying much. However, that does not contradict the fact that n → 0 and
ΔG → 0. That will still hold. Also 0.1 is not really very close to 0; so, even though we get this
error, we see that it does not go beyond this 0.1. That is what it shows.
(Refer Slide Time: 16:57)
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Let us take the next problem. We want to show something here. We have two functions 5 and
6. They are of course defined in a neighborhood of a point 0, and we consider their sum 5 +6. Now
5 + 6 is a new function. We have the linearization of 5 at 0; we have the linearization of 6 at 0; and
also we have the linearization of 5 + 6. What is the relation between those three linearizations?
That is being asked. Sctually, we want to show that this sum of the linearizations is equal to the
linearization of the sum. That is to be shown, and that should be quite easy.

What do we do? Let us first find out the linearization of 5 . That is equal to ! ( 5 ) = 5 (0) +
5 ′(0) (G − 0), where G is in a neighborhood of 0. And what is the linearization of 6? Instead of G in
! (G), we are writing here ! ( 5 ) and ! (6) for ease notation. So, ! (6) == 6(0) + 6(0) (G − 0). And
what is ! ( 5 + 6)? ! ( 5 + 6) = ( 5 + 6) (0) + ( 5 + 6)′(0) (G − 0). But ( 5 + 6) (0) = 5 (0) + 6(0) and
similarly, ( 5 +6)′(0) = 5 ′(0)+6′(0). When you come to expand ! ( 5 +6), you get 5 (0)+ 5 ′(0) (G−0)
plus 6(0) + 6′(0) (G − 0). And, that is exactly ! ( 5 ) + ! (6). That is what we have shown. That is,
the linearization of the sum is equal to the sum of the linearizations.

Let us go to next problem. It asks to get a differential formula that estimates the change in
the lateral surface area of a right circular cone when the radius changes from 0 to 0 + 3A, while
the height remains constant. So, you have a circular cone; there is some radius of the base, say it
is 0; the height remains same, and you are changing this right circular cone to another with the
difference in the base radius being dr; so this distance is dr.
(Refer Slide Time: 20:01)

It asks to find the change in the lateral surface area. Of course you know the formula for the
surface area and the lateral surface area. The lateral surface area is c times the base radius times
the lateral height: cA

√
A2 + ℎ2. We want to find the change in this function.

Here, we take ((A) as a function, it is ((A) = cA
√
A2 + ℎ2. The height is remaining constant,

so ℎ is constant. We take 3(/3A , where ( = cA
√
A2 + ℎ2. It is a product; and its derivative is the
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derivative of A, which is 1, times
√
A2 + ℎ2 plus A times the derivative of

√
A2 + ℎ2. That is giving

you this expression: [c(A2 + ℎ2) + cA2]/
√
A2 + ℎ2.

(Refer Slide Time: 21:10)

We want to estimate the change, not find the exact change, right? Of course, you can find the
exact change. Our estimation is through the differential, that is, Δ( is approximately equal to 3(.
You find 3( equal to 5 ′ that is, (′(A) times 3A. That is really an estimation of the change. Is that
fine? So, let us stop here.
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