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Inequalities to Equalities LAY
Example 1: What are the values of x that satisfy |3x — 2| = 5? ,;p‘;ﬁ
2+5 7
Bx-2|=5 & 3x-2=15 & 3x=2+£5 & X=——=3 -1.

Example 2: Find the values of x that satisfy [3x — 5| < L.
4
Bx-5|<1 & 5-1<3x<5+1 & 3 <x<2.

Equalities from Inequalities: Leta, b € R.
1. If foreach € > 0, |a| < e, thena = 0.
2, If foreachn e N, |a| < 1/n, thena = 0.
3. If foreache >0, a < b+ ¢ thena < b.
4. Ifforeachne N, a <b+ 1/n,thena < b.
(1) Assume that for each € > 0, |a| < €.
If |a] > 0, then take € = |a|/2.
Then |a| < |a|/2 is a contradiction.
So, lal =0. Thena = 0.

Now let us see, how to use these inequalities to prove equalities. We will see that slowly but let
us first find out what does this mean by this equality. Let us find out all values of x that is all real
numbers x, which satisfy the equation: |3x — 2| = 5. Immediately you can think of squaring it :
(3x —2)%? = 5%, and try to solve it. But there can be better ways.

What we do, we know that this modulus is either equal to that or it is equal to minus of that. It
means 3x — 2 can be either equal to 5 or equal to —5. That is what we write immediately. Instead
of a quadratic we get two linear expressions. Of course, when you solve the quadratic,you would
obtain this one, but it is easier directly.

So, 3x — 2 = +5. That will be easier to solve now. It gives two possibilities: 3x =2+ 5 =7 or
3x =2 -5 =-3. Then, you divide by 3 to get x =7/3 or x = —1.

Similarly, let us find out if instead of equality, we have an inequality. That is, find the values of
all x that is all real x, that satisfy |3x — 5| < 1. Now, you can use your sixth property, which we
mentioned earlier: |x — a| < § means x belongs to the §-neighborhood of the point a. We will use
that and see what happens. Now, |3x — 5| < 1 ifand only if, 1 — 5 < 3x < 1 +5. These are all the
possibilities. You simplify it to get 4/3 < x < 2.

These are just simple things telling how we get equalities and how do you get inequalities with

modulus. In fact, there is a way in calculus. Sometimes we find it is very difficult to prove equalities



but probably easier to prove some inequalities. In those cases you must know how to apply or how
to obtain an equality from inequalities. Always we cannot get of course, but there are some cases
where this is possible. Let us see those cases.

Suppose for every € > 0, you find that |a| < €. It is a bit difficult to understand. What it says:
you have some real number, somewhere, a and you see that its absolute value, absolute value is
always on the right side, that is less than € for every e. What will happen to the absolute value
instead? Let us consider |a|. It is non-negative and that is always less than whatever € you take.
So, if this is my |a|, now it is less than €. But what is this €? Let me take 1, € is 1 here. I have
la] < 1. But I also see that for every e, |a| < €. If I take € = 1/2, |a| cannot lie here; it has to lie
here. So this is |a[, it can be here. But at € = 1/4 |a| cannot be there; it has to be here. It proceeds
that way. It gives a feeling of what might happen to this |a|. It says that |a| cannot be anything
positive, it has to be 0. If it is anything positive we can always choose another € which is smaller
than that; but it should have been smaller than that €. Exactly that is the proof.

So let us see how to proceed; we will come back to this. First let us prove. Assume that for
each € > 0, |a| < e. We are now trying to prove 1; and will come back to 2, 3, 4 in a minute. So,
assume that for each € > 0, |a| < €. We want to prove that |a| = 0. But |a| can be either equal to
0 or can be greater than 0; it cannot be negative. So, the other case remains is |a| > 0. Suppose
on the contrary that |a| > 0. We are really using that geometry we have discussed. We have 0
here, now |a| > 0, so |a| is here. We choose our € to be something smaller than |a|. Let us say,
€ = |a|/2. For this € what will happen? |a| has to be less than €; that means, |a| should be less than
|a|/2. But there is contradiction. Therefore, |a| cannot be greater than 0. So, |a| must be equal or
to 0. And |a| = 0 gives a = 0.

That is how it answers our question; that if |a| < € for every €, then a has to be equal to 0.

Now let us look at the second statement. Here, we do not have every € > 0, but it says something
about natural numbers. It says that |a| < 1/n for every natural number n as we have done there.
That means |a| < 1, |a| < 1/2, |a| < 1/3, |a| < 1/4 and so on. Then, it says that |a| cannot be
positive; it has to be equal to 0.

If T were able to feel it correctly, then all it says that, we are not given the same inequality for
every epsilon, but only for some very particular epsilons; they are still infinity in number and they
are in the form 1/n for natural numbers n. Of course, you can use Archimedean principle. If you
have any 1/n, if you have epsilon positive, then you can choose one n such that 1/n < €. So, this
really should give rise to the answer. In fact we will prove that through Archimedean principle. Let

us see, how to go about it.
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Equalities from Inequalities Contd.

2. Ifforeachn e N, |a| < 1/n, thena = 0.

Reason: Suppose for eachn € N, |a| < 1/n.

On the contrary, assume that |a| > 0.

Archimedian principle asserts that given « > 0, 5 > 0, there exists
n € N such that na > .

Now, take @ = |a] and 8 = 1.

Then, Archimedian principle gives us m € N such that am > 1 or,
la] > 1/m.

This contradicts the supposed fact that for eachn € N, |a| < 1/n.
So, |a| > 0is wrong.

That is, |a| = 0. It implies that a = 0.

Similarly we prove

3. Ifforeache >0, a < b+ e thena < b.

4, Ifforeachn e N, a< b+ 1/n,thena < b.

If for each n, |a| < 1/n, then we want to show that a = 0. We assume that for each n, |a| < 1/n.
Our aim is to show that a = 0. As our experience shows we should try to show |a| = 0. But |a|
cannot be negative; of course it can be positive. So, let us assume the contrary that |a| is positive.
We use the Archimedean principle. Recall what it says: given any two positive numbers say « and
B, you can always find one natural number n such that na > B. How to use that here? Well, we
take @ = |a| and B = 1. That means you will get one natural number m such that ma > 1. Or if
you write it: m|a| > 1, or, |a] > 1/m. So, we have a natural number m such that |a| > 1/m. But
that is a contradiction, because |a| must be less than 1/n for every n. How can you find one m for
which |a? > 1/m? That is the contradiction. This contradiction shows that |a| > 0 is wrong. So,
|a| = 0, and therefore a = 0.

Similarly, you can show the other properties, which I am again reproducing it here. You can
prove that: for every € > 0, if a < b + €, then a < b. Now you are not looking at mod but directly
real numbers a and b. It is says that a < b + € for every €. So you as well think of every € very
near 0; it is less than everything bigger than b, so it cannot be bigger than b.

If @ > b, then suppose a is here and b is here. Our condition a < b + € will not be satisfied for
some €. How can you produce such an €? Now that a < b + € is contradicted; because b is smaller
than a, a is bigger. So, what I do: a should be less than b + €. If I take € to be larger than this
distance, then a is again smaller or equal to that €. So I take something here: this is my b + €. Now
what it says, is @ > b + €; but a should be smaller than b + €. So, that is how you have to choose
your €, something like (a — b)/2, which when added to » will be still smaller than @ and that will
be the proof.

So, the feeling matters. What happens here is: if a < b + €, then € can be made smaller and
smaller so that a has to be less than or equal to b; it cannot surpass b, it cannot be bigger than b,



that is what it says. Similarly, the fourth one says that instead of €, take any n; if a < b + 1/n for
each natural number #n, then < b.

These are the four things. In one of these forms it will be useful for showing that something
equal to something or something is less than or equal to something. Whereas we can produce only
less than, a is less than this, |a| is less than this. In that case we can conclude thata = b ora < b

and so on. So, these are about equalities and inequalities.
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Exercises
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. Find all values of x that satisfy | % — 1| >
Ans: |12 -1>2 0 Tc1-Zor¥>1+12

e x<lorx> % & x € (—oo, l)U(%,OO)-

2. Solve the equation [x — 1| =1 —x.

Ans: | —a|l =aiffa = 0. So,
x-1l=1-x o 1-x>20e 1>2x & x€ (-0, 1].

3. Find all values of x that satisfy |x| < 3 and x > —%.

Ans: |x] €3 © -3 <x<3. So, 2

b Hi’_ 3
(] <3andx>-1) & -1<x<3.

Now, let us use what we have learnt. The question is you have to find all x that satisfies this
inequality: |3x/5—1] > 2/5. You can square both the sides, but we have done better. We know what
is the meaning of |x — a| > . This means x lies in the complement of the closed §-neighborhood.
That means x has to bigger than a + ¢ or x is smaller than a — 6. Let us use that.

Now, |3x/5 — 1| > 2/5. We use that. It says 3x/5 < 1 —2/50r 3x/5 > 1+2/5. Now we
solve both the things, and go on putting them all. The first one gives 3x/5 < 3/5, or 3x < 3, or
x < 1. The second one gives 3x/5 > 7/5, or 3x > 7, or x > 7/3. That means all these x satisfy
this condition x < 1 or x > 7/3. We can write that in terms of intervals, of course. That is,
x € (=00, 1) U (7/3, 00); that is how it will look.

Now, let us go for the second problem. It asks us to solve the equation |x — 1| = 1 — x. Again,
you can square it, but do we need it? What we need to use is | — a|; because this is x — 1 and on the
right is 1 — x. This 1 — x is really —(x — 1). It reminds us the equality that | — a| = a if and only if
a > 0. Here, that means x — 1 must be greater than equal to 0, or 1 — x is greater than 0? Which
one we are using? | — a| = a if a > 0. If you take the other way, you would get |a| = —a. Then,
a < 0. In that case, a will be x — 1; but we are using this | — a| = a if and only if ¢ > 0. Here our
a is 1 —x. That gives the inequality that 1 — x must be greater than or equal to 0. And that directly

gives us 1 > x. So, where is x? That means x < 1. If this is 0, this is 1, then x can be anywhere



here. That is what we say x € (—oo, 1]; that is about the equality.

Now let us take the third one. It asks us to find all real numbers x, which satisfy these two
conditions. The first condition is |x| < 3 and the next condition is x > —1/2. So, where do we
start? One condition is nice, x > —1/2, easy to tackle. But the other one comes to |x|. We should
see first the meaning of |x| < 3. Again we go back to our earlier thing: |x —a|. Here, |[x — 0| < 3. If
you have remembered the earlier ones, it directly gives you x belongs to the -neighborhood of 0.
So, =3 < x < 3. Of course that is clear. Here you have 0 and you have 3, then the distance would
be 3. So, the distance is 3 means, on this side is 3 and on this side is —3, so x must be in between
this; that is what it says.

Now, you have to combine both. Once we have the other one: x > —1/2, we would get |x| < 3
and x > 1/2; that is same thing as telling x is between —3 to 3 and x > —1/2. That means it is
really this one: x can be here: —1/2 < x < 3.

All that we have covered today is about the absolute value, and how absolute value is used in
the equalities by shifting the origin. The main concern was that whether |x —a| =d or |[x —a| < §
or |x —al| > 8. Then using all these we try to find out the relation between the neighborhoods and
the absolute value. So, let us stop here.



