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Using Rolle’s Theorem and Mean Value Theorem - Part 1

This is lecture 19 of Basic Calculus-1. Recall that in the last class we discussed Rolle’s
Theorem and Mean Value Theorem; and also isslustrated those with examples. Today we will have
an extension of that. We will not go to any new concepts; we will solve some more problems basing
on these results. There will be more examples, and some exercises.

It is better to use the exercises this way. Whenever an exercise or a problem comes, you can
read the problem and pause the video for sometime; solve it yourself; and then come back to the
solution. That will be better for you. Of course, you can do the same for examples, but you have
the freedom; you can read those because they are meant to be examples.
(Refer Slide Time: 01:12)

With this in mind, we start with our first example. Let 5 (G) be a function; it is continuous on
[0, 1]. That is, 5 : [0, 1] → R; it is continuous. Also, it is given that 5 (G) is differentiable on the
open interval (0, 1). These are the assumptions in the Rolle’s Theorem, as you remember. But in
Rolle’s Theorem, we have 5 (0) = 5 (1), which is not given here. It is given that 5 (0) 5 (1) < 0;
which means they have opposite signs. If 5 (0) is plus, 5 (1) is minus, and if 5 (0) is minus then
5 (1) is plus so that that product is less than 0. And, it is also known that 5 ′(G) ≠ 0 for any
G ∈ (0, 1). So, it does not vanish at any point of (0, 1).

We need to show that 5 (G) has a unique zero in the closed interval [0, 1]. The first thing we
have to show is that 5 (G) has a zero; that is, there is a point 2 such that 5 (2) = 0. And, the second
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thing we have to show is that if 3 is another point, say, 2 < 3, then there is something wrong; or
with any such 3, you have to show that 2 = 3. One of this you have to show for uniqueness. Let us
see.

Now that 5 (0) and 5 (1) have opposite signs, we can use Intermediate Value Theorem on the
interval [0, 1] to get one point 2 where 5 (G) is equal to 0. At some point it is negative, at some
point it is positive; so in between somewhere 0 must be achieved; that is what the Intermediate
Value Theorem says. That shows that there exists a point 2 such that 5 (2) = 0. Now you must
show also uniqueness. For that this condition 5 ′(G) ≠ 0 will be helpful; and we may use the Mean
Value Theorem or Rolle’s Theorem. I think, Rolle’s Theorem is easier.

So, suppose there exists another point, say 3 ∈ (0, 1) with 5 (3) = 0. So 2 and 3 are two
different numbers now; may be, 2 < 3 or 3 < 2. Now, 5 (G) satisfies Rolle’s Theorem with
5 (2) = 5 (3) = 0. Think of 5 on the closed interval [2, 3], which is a subset of (0, 1). On this
closed interval [2, 3], 5 is continuous and 5 is differentiable on the open interval (2, 3). Then,
Rolle’s Theorem implies that there exists a point U between 2 and 3 where 5 ′(U) = 0. But we know
that 5 ′(G) ≠ 0 inside (0, 1). So, that is the contradiction. Therefore, there does not exist another
point. So, 2 is the only zero of 5 (G) inside the interval (0, 1). See the way we have used Rolle’s
Theorem.
(Refer Slide Time: 04:28)

Let us take another example. Here, we have a function which is defined on the whole of R.
So, 5 is a function from R to R and it is known to be differentiable. Further, we have some more
information: 5 (1) = 1 and 5 ′(G) is 0 for G < 1. That is, at G = 1, it is equal to 1 and to the left of it
5 ′ is 0. See, there are two different information. One information is about 5 , its functional value
at 1, and the other one is talking about 5 ′, that is, 5 ′(G) = 0 for G < 1 and 5 ′(G) > 0 for G > 1. It is
negative to the left of 1, and positive to the right of 1.
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We have to show two things. First, it asks or suggests that 5 (G) ≥ 1 for all G, and second,
5 ′(1) = 0. Now, 5 ′(1) exists because 5 is differentiable and we have to show that 5 ′(1) = 0.

Let us try the first one. The information on 5 ′ is given for all points to the left of 1, and again,
for all points to the right of 1. Let us consider two different cases.

Suppose G is a point which is less than 1. Now, we use the Mean Value Theorem. See that it
satisfies all the conditions in the Mean Value Theorem. Here, suppose G < 1. You are considering
the closed interval [G, 1], where it will be satisfying the conditions of Mean Value Theorem. Now,
it is continuous over that closed interval [G, 1], and differentiable in the open interval (G, 1). So,
you can apply the Mean Value Theorem to get a point 2 between G and 1 such that the the slope of
the secant will be equal to the slope of the tangent at 2. That is, [ 5 (1) − 5 (G)]/(1 − G) = 5 ′(2) for
some point 2 between G and 1. Now that 5 ′(G) < 0 for G < 1, this 2 is between G and 1, this 5 ′(2)
must be less than 0. How? We have chosen G to be smaller than 1. So, 1 − G > 0, it is positive.
The ratio [ 5 (1) − 5 (G)]/(1 − G) is known to be negative. That means the numerator must be less
than 0; because 1 − G is positive and the ratio is negative. So, numerator must be negative. Now,
this gives 5 (1) < 5 (G). This is for all those G which are less than 1. We have 5 (1) < 5 (G).

Similarly, we will consider G > 1. Let us take any point G which is bigger than 1. Again, we
apply the Mean Value Theorem on the closed interval [1, G]. There, [ 5 (G) − 5 (1)]/(G−1) = 5 ′(3)
for some 3 between G and 1, or between 1 and G, since 1 < G. Now again, we consider the same
way, which one is negative and which one is positive. Here, we know that 5 ′(3) is positive, and
G − 1 is positive. Therefore, 5 (G) − 5 (1) must be positive. So, it says that 5 (G) > 5 (1). As earlier
we have got 5 (1) < 5 (G), which is same thing as telling 5 (G) > 5 (1).

That means at any point G, which is smaller than 1 or which is larger than 1, we always have
the inequality 5 (G) > 5 (1). And, this is about all points G which is not equal to 1. When G = 1,
what happens to 5 (G)? It is 5 (1), and that is known to be equal to 1. Therefore, whichever G you
may choose from R, 5 (G) must be greater than or equal to 1. That is our conclusion, so Part (a) is
proved.

Now we should go for Part (b). Here, we have to show that 5 ′(1) must be equal to 0. So, what
do we do? It is 5 ′(1); it is not given; but 5 ′ of smaller than 1 is given, and 5 ′ of bigger than 1 is
given. Let us choose any point G smaller than 1. As earlier we have seen that [ 5 (1) − 5 (G)]/(1− G)
is negative. It is same as telling that [ 5 (G) − 5 (1)]/(G − 1) < 0. Now if you take G > 1, a similar
thing will happen. If you take G > 1, then again, we have seen that [ 5 (G) − 5 (1)]/(G−1) is positive.
So, [ 5 (G) − 5 (1)]/(G − 1) is again positive or greater than 0 for G > 1.

Now, let us look at this. If you take the limit as G goes to 1−, then [ 5 (G) − 5 (1)]/(G − 1) is less
than or equal to 0, because for all G smaller than 1, the ratio negative. So, in the limit, it can be equal
to 0. We thus write: it is less than or equal to 0. If you take the right hand limit, this inequality says
that the same limit as G → 1+, from the positive side, the limit of the ratio [ 5 (G) − 5 (1)]/(G − 1)
is greater than or equal to 0.

Now when you say 5 ′(1) exists, it means that both these limits exist and are equal. That is our
definition of 5 ′(1). Since they are equal, where one is less than equal to 0, another is greater than
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equal to 0, we conclude that both of them must be equal to 0. So, 5 ′(1) = 0. We need to turn back
to our definition of the derivative. It is the limit of [ 5 (G) − 5 (1)]/(G − 1) as G goes to 1. On the
left side, it is less than 0, and on the right side it is greater than 0; limit exists; therefore the limit
must be equal to 0. That is the argument we used.
(Refer Slide Time: 12:02)

Let us take another example. Here, 5 is again a real valued function defined over the whole
of R; its domain is R. It is given that 5 is a differentiable function. That is, everywhere it is
differentiable. And, its derivative is always less than or equal to 2; that is also given. This is our
information. Given that 5 ′(G) ≤ 2 at every G. Also something else is given: 5 (2000) = −4. You
want to find out what would be the maximum value of (2021).

Of course the exact maximum value depends on the function. We are really searching for a
possible maximum value. So, what is the possible maximum value of 5 (2021)? We can never
make it bigger by choosing our 5 , that is the meaning of “what is the maximum value of 5 (2021)”?
Given 5 , there is a maximum, but this says something else. It says that whatever 5 you may take,
if 5 ′(G) ≤ 2 and 5 (2000) = −4, then what could be possibly the largest value of 5 (2021)? How
do we proceed?

We apply again the Mean Value Theorem. We want 5 (2021). Now, 5 (2021) is equal to
5 (2000) plus (2021 − 2000) multiplied by 5 ′ evaluated at some point 2 between 2000 to 2021.
That is what Mean Value Theorem says. We are applying the Mean Value Theorem for the function
5 , which is defined over the closed interval [2000, 2021]. We know it is differentiable in the
open interval and it is continuous in the closed interval. So, that is how Mean Value Theorem is
applicable. Now that 5 ′(2) ≤ 2 we can have some estimate for 5 (2021). You see that 5 (2000) is
some number, 5 ′(2) into (2021-2000) which is a positive number. So, if 5 ′(2) becomes the largest,
which is 2 here, then this expression will be largest. So, the maximum is obtained where 5 ′(2)
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is maximum. Then, maximum means we will take that as 2 itself. With 5 ′(2) = 2, we get the
maximum value of 5 (2021). So, we substitute 5 ′(2) = 2 here. We get 5 (2000) plus 2 into this,
which is −4 + 2 × 21, which is 38.

But there is some thing to it; it is not yet finished. We say that it is the maximum possible value.
Is it really attained? That means whether there exists a function 5 which satisfies these constraints
and that gives 5 (2021) = 38? Of course you can construct an example very quickly because you
are taking 5 ′(G) = 2 and 5 (2000) = −4. You may see a simple function like 5 (G) = 2G plus some
constant. When differentiated, it gives the value 2. So, let us try 5 (G) = 2G + 2. It is just a trial.
This would be equal to −4 when G is replaced by 2000. Here, this gives 4000+ 2 and that should be
equal to −4. That gives 2 equal to −4004. That means we take the function 5 (G) = 2G−4004. Now
you see it satisfies all the conditions that 5 ′(G) = 2 and 5 (2000) = −4. That is how we construct
an example.

Now if I take 5 (2021), then I would get 2G giving 4042 and −4004, which is giving 38. You
are getting exactly 38. That means this possible maximum value can be achieved by choosing a
function suitably, namely, 5 (G) = 2G − 4004. This completes the problem.
(Refer Slide Time: 17:24)

Let us go to the next problem. Here again, the function is defined over the whole of R; it is a
real valued function with domain equal to R. It is known, as earlier, that it is differentiable with
5 ′(G) ≤ 2 for each G ∈ R. This is exactly the same condition as in Example 3. But we are asked
to get something else. It is known that 5 (−10) = −20. This condition is changing. And also, we
have 5 (10) = 20. Then we want to find all possible values of 5 (c).

As you have guessed, we can have some 5 (G), which will satisfy this. It will be equal to 2G. I
think that does. Here, 5 ′(G) ≤ 2, 5 (−10) = −20 and 5 (10) = 20. So, a possible value of 5 (c) is
2c. It is a possible value; but there can be other possible values. The problem is asking us to find
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out all possible values of 5 (c). You see that 5 ′(G) ≤ 2; so it does not look like we will get another
value. Let us try and see what happens.

The first thing is, this function 5 (G) = 2G satisfies all conditions. So, 5 (c) = 2c is a possible
vale. Now, we want to show that this is the only value. Our guess was 5 (G) = 2G. So, let us
define another function 6(G) = 5 (G) − 2G. If we can show that 6(G) = 0 then that would finish the
problem. It will conclude that it is the only value. Let us see.

Now, 6(G) = 5 (G) − 2G; 6(G) is continuous on [−10, 10], and differentiable on (−10, 10). So,
you can use the Mean Value Theorem or Rolle’s Theorem, whichever one you want. What we have
is 6(−10) = 0, 6(10) = 0 and 6′(G) = 5 ′(G) − 2 ≤ 0 for each G ∈ (−10, 10). If you use the Mean
Value Theorem, you should get one 2 ∈ (−10, 10) such that 6(c) = 6(−10) + 6′(2) (c − (−10)).

See, we have the interval (−10, 10), where c lies. By the Mean Value Theorem, we get
2 ∈ (−10, 10) such that 6(c) = 6(−10) + 6′(2) (c + 10). In fact, instead of 2 ∈ (−10, 10) we can
limit it to 2 ∈ (−10, c) also. You can think of this closed interval where you apply. So, that gives
6(c) = 6(−10) + 6′(2) (c + 10). Now that 6(−10) = 0 and 6′(2) ≤ 0, because 6′(G) ≤ 0 for each
x, we have this expression as negative, and c + 10 is of course positive. So, this part becomes
negative. Therefore, this is less than or equal to 6(−10), which is 0. That means, 6(c) ≤ 0. That
is what we get.

Now again, we go to the other side. We have c here and 10 here. On this closed interval, if
we use the Mean Value Theorem, then you would get 6(c) = 6(10), coming to the other side, plus
6′(3) (c − 10), where this 3 is lying between c and 10. Now, c − 10 is negative and 6′(3) is also
negative. So, this is positive. Then, 6(c) must be greater than or equal to 6(10), which is 0. Here
we have 6(c) ≤ 0. Here, we get 6(c) ≥ 0. Therefore, 6(c) must be 0.

That is what we wanted. We thought that all possible values boil down to only that value;
that 5 (c) = 2c. We defined 6(G) = 5 (G) − 2G and tried to show that 6(c) = 0. And, that
now follows since 6(c) ≤ 0 and also 6(c) ≥ 0. Therefore, 6(c) = 0. Once 6(c) = 0, we get:
5 (c) = 6(c) + 2c = 2c.

So, our conclusion is that there is only one such value of 5 (c), which is exactly equal to 2c.
Fine?
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