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Our first example is this. Suppose you take a function which is defined as 5 (G) = G3 + 0G + 1.
But we do not pose it as a function now; we pose it slightly differently. We say, that the cubic
polynomial G3 + 0G + 1 has a unique real root, if 0 > 0. That means we consider the polynomial
G3 + 0G + 1, where 0 > 0, and show that it has a unique real root.

Of course, we know by the fundamental theorem of algebra that there will be only maximum
of three roots. There is a real root because it is of odd degree; that also we know. But it says there
is a unique root. There cannot be two roots, if 0 > 0. So, how do we proceed?

We define a function, say, 5 (G) = G3 + 0G + 1. Now, this is a polynomial of odd degree.
Therefore, it has a real root. Suppose that there are two roots. We want that root to be unique. So,
suppose there are two roots, say, 2 is a root, 3 is a root, and 2 < 3. That means 5 (2) = 0, 5 (3) = 0
and 2 < 3.

Now, we concentrate on the closed interval [2, 3]; where the function is continuous, and on the
open interval (2, 3), it is differentiable. So, we can apply our Rolle’s theorem. Rolle’s theorem
says that there exists a point A inside (2, 3) where 5 ′(A) = 0. We compute 5 ′(A). This says that
5 ′(G) = 3G2 + 0. So, 5 ′(A) = 3A2 + 0. Now, A2 is non negative, 0 is given to be greater than 0; so,
5 ′(A) is always greater than 0. That is, 5 ′(A) cannot be equal to 0. This is a contradiction to Rolle’s
theorem. That means our assumption that there are two real roots is wrong. That proves that it has
unique real root.
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Let us take the second example. It is given here that 5 (G) has three zeros in the interval [0, 1].
So, roots and zeros are used synonymously. And that gives a root of an equation and zero of a
polynomial or a function. That is why we write 5 (G) has three zeros in the interval, the closed
interval [0, 1]. That means there are three points, say, G1, G2, G3 ∈ [0, 1] such that 5 (G1) = 0,
5 (G2) = 0 and 5 (G3) = 0.
(Refer Slide Time: 02:48)

Let us assume that 5 ′′(G) is continuous on the closed interval [0, 1]. We are not taking 5 ′, but
we are taking 5 ′′ and that is continuous on the closed interval [0, 1]. We want to show that 5 ′′(G)
has a zero in the open interval (0, 1). So, 5 ′′(G) is continuous and 5 (G) has three zeros will imply
that 5 ′′ becomes 0 at some point inside (0, 1). So, how do we proceed?
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We may have to apply Rolle’s theorem successively. Suppose the three zeros are U, V and W.
They are three zeros. Without loss of generality, we can say that U < V < W. These are the three
zeros inside the interval [0, 1]. That means, 0 ≤ U < V < W ≤ 1.

Now, let us look at Rolle’s theorem. It says 5 (U) = 0, 5 (V) = 0 and 5 is continuous in the
closed interval [U, V], and it is differentiable in the open interval (U, V); so, by Rolle’s theorem
there is a point 2 such that 5 ′(2) = 0. Similarly, you look at the two roots V and W. With the same
argument, there exists a point 3 such that 5 ′(3) = 0. You have now got two points 2 and 3, 2 < 3

inside the open interval (0, 1) such that 5 ′(2) = 5 ′(3) = 0.
(Refer Slide Time: 05:46)

Now, look at 5 ′. It is given that 5 ′′ is continuous. So, 5 ′ is also continuous on the closed
interval [2, 3] and 5 ′ is differentiable in the open interval (2, 3). So, you can again apply Rolle’s
theorem to conclude that there is a point between 2 and 3, such that 5 ′′ becomes 0 at that point, and
that point also belongs to the open interval (0, 1) because I < 2 < 3 < 1. That proves that 5 ′′(G)
has a zero in (0, 1). That is how we may have to use Rolle’s theorem many more times; specially
when the order of the derivatives are more, this might be required.

Let us take the next example. Here we are asked to show that there exists a unique number 2
between −1 and 1 such that this equation is satisfied for that number 2; that is, (1− 2)−1 +

√
1 + 2 −

3.1 = 0. Here we may have to compute something. How do you show that there is a point 2 in
between −1 to 1 such that this equation is satisfied? We will go for uniqueness later.

For that what we do is, we think of the function 5 (G) = (1 − G)−1 +
√

1 + G − 3.1, whatever
is given there. If I take a point say −0.99, which is inside (−1, 1), and compute 5 (−0.99), we
would get something like, say, it is greater than −2.4. There will be some other points which are
left behind here, we may write greater than −2.4. It will not be exactly equal, it may be greater
than −2.4. Similarly, if you compute at 0.99, which again belongs to the open interval (−1, 1), we
would get that 5 (0.99) < 98.2.
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In fact, our computation may give 2.4; so, it is not greater than, it will be less than, since it is
chopped off here. And here similarly it is chopped off; so, it is 98.2 plus something. You may get
it to be greater than that; this is really less than or equal to this, and this is greater than or equal to
this, because something is chopped here from the decimal points.

We see that 5 (−0.99) is negative and 5 (0.99) is positive. Therefore, by Intermediate Value
Theorem, there exists a point 2 between this such that 5 (2) = 0. That gives us the existence of a
root of this 5 (G), or a zero of this 5 (G). So, there exists a point 2 in between −0.99 to 0.99, which
is again in between −1 to 1 such that that equation is satisfied for this 2.
(Refer Slide Time: 10:19)

But we want to show uniqueness, that such a point is unique; that there is no other point between
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−1 to 1 satisfying the equation. So, suppose that there exists another point, say 3, where 5 (3) = 0.
We already had 5 (2) = 0; now we also have 5 (3) = 0. Now, it is differentiable function, it is
continuous on the closed interval [2, 3] and differentiable on the open interval (2, 3). You can
apply Rolle’s theorem. It implies that there is a point U in between 2 and 3, which again belongs
to (−1, 1) such that 5 ′(U) = 0. We expect that there should be something wrong.

Well, let us take 5 ′(G). Now, 5 ′(G) = (1−G)−2+(1/2) (1+G)−1/2. How? When you differentiate
it, (1 − G)−1 gives −1 times (1 − G)−2 times the derivative of 1 − G with respect to G, that is, −1;
and the second one

√
1 + G gives (1/2) (1 + G)−1/2. Now, when you take G between −1 to 1, this

expression is always greater than 0. It is 2, here also 2 so it is always greater than 0.
Since 5 ′ is greater than 0, it contradicts our earlier derivation that 5 ′(U) = 0 for some U. That

means, our assumption that there are two points such that 5 (2) = 0 and 5 (3) = 0 is wrong. That
proves that there is a unique 2 such that this equation is satisfied with that particular 2. That is it.

Let us take another example. Here we are asked to find a function whose derivative is sin G,
and whose graph passes through the point (0, 2). That means we need a function 5 (G) such that
5 ′(G) = sin G and it passes through the point (0, 2), that is, 5 (0) = 2.

So, what do we do? We apply our earlier result, which was a corollary of Mean Value theorem.
It says that if two functions are having the same derivative, then they will differ by a constant. So
first, we have to see what is a function whose derivative is sin G. Of course, we know it is cos G or
rather, − cos G.
(Refer Slide Time: 12:32)

We know that (− cos G)′ = sin G. We have the function − cos G, and we have a function 5 (G),
whose derivatives are same, that is sin G. Then, they must differ by a constant. That means, our
5 (G) will be equal to − cos G plus some constant,. Write is as 5 (G) = − cos G + 2. Now we apply the
second condition that 5 (0) = 2. By substituting G = 0, we have 2 = 5 (0) = − cos 0 + 2 = −1 + 2.
That gives 2 = 3. When 2 = 3, our function is 3 − cos G. That is what it is.
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Sometimes, you may have to use this kind of argument using some corollary of Mean Value
theorem. That is how we will be using our results.
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