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Lecture 13 - Part 1

Differentiability - Part 1

Well, this is lecture 13 of Basic Calculus 1. In the last two or three classes, we had covered the
notion of continuity. Today we will be talking about another important concept, which is called
differentiability of functions.

The idea is really simple. There is a cyclist, who covers one kilometer of distance in six
minutes. You want to find out what is the speed of the cyclist. That is easy. The distance covered
is 1 kilometer and the time taken is 6 minutes. So, it is 1 kilometer divided by 6 minutes; that will
be the speed, that is the average speed. If you want to convert to different units, say, kilometer per
hour. So, you write that 6 minutes as 1 divided by 10 hour; then it becomes 10 kilometer per hour.
But see, what is happening here. We are computing the average speed. It might happen that on the
road where the cyclist is riding is having some uphills, some downhills so that his speed is affected;
sometimes it is faster, sometimes it is slower and so on. Finally, what we get is the average speed.
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However, this notion of differentiability is something like instantaneous speed. So, what is the

speed of the cyclists at a given point. Obviously, we cannot do that here. What we are doing is
average speed only. But the average speed uses speed over some duration, say 6 minutes was here.
Suppose it is not over 6 minutes, but we want to compute the instantaneous speed at a point. What
do we do? We take that duration to be as small as possible, that is close to 0. Let us say # is the

time taken. And, how do you get the distance? Where from you have started that is of course 0.



But you might have covered some other distance before coming to the final place. We measure the
total distance.

Let us say that the time point is ¢. Write the distance as a function of time, say, f(x). After
the duration of 4, the distance is f(c + k). Now the distance covered from time c to time ¢ + A is
f(c+h)— f(c). The duration is of course h. This [ f(c+ h) — f(c)]/h is the average speed in the
duration 4, starting from the instant of time ¢, and going up to ¢ + 4. Now when you speak about
the instantaneous speed at the point c, at the time ¢, you take this duration of time close to 0. That
means we will take the limit of this ratio where f(x) is the distance as a function of time. This
would give us the instantaneous speed. This is the notion of differentiability.

So, let us give the definition. Suppose we have a function f defined from a subset D of R to
R. And we are not going not for the units now, we are ignoring the units. On the x-axis you have
time, and on the y-axis you have the distance covered. If the distance is in kilometers and time is
in hours, then you would get the ratio as kilometer per hour. We are making it unit less. So, on the
x-axis a number shows the time measured, and one on the y-axis shows the distance covered. The
function f connects to the distance with time. Now, f is a function from D to R, where D C R.

Let ¢ be an interior point of D. We need the time instant ¢ to be an interior point because we
will take a neighborhood of c. Recall that ¢ is an interior point means, there is a neighborhood of ¢,
which is contained inside D. That is, D contains some open interval of the type (¢ — 8, ¢ + ). So,
¢ is an interior point of D. In fact, we will not consider abstract subsets D of R, we will consider
just intervals. So, think of ¢ as an interior point of the interval D, on which f is defined.

Now what we do? We take the ratio, which is f[(c + h) — f(c)]/h, and then take its limit as
h goes to 0. Since there is a neighborhood around ¢, which is contained inside D, this limiting
process makes sense. If this limit exists, that means it is a real number, then we would say that the
function f(x) is differentiable at x = c. It is quite possible that the limit does not exist. We will
see some examples to that effect.

First of all we are assuming that ¢ is an interior point, and then you take the ratio, take its limit
as h — 0. Now, this ratio is a new function of 4. Since f(c) is a number, the ratio f(c+ h) — f(c)
divided by £ is a function of 4. We try to compute this value as limit z goes to 0. If that value is a
real number, then we say that f(x) is differentiable at x = ¢. Then we write this limit as f’(c), and
call it the derivative of f(x) atx = c.

So, it is implicitly defined. That is, once the derivative exists, we say it is differentiable. And
once it is differentiable, then the derivative exits. Both the things are interconnected. That is why
we put it this way: if the limit exists, we call f to be differentiable; and whatever is the value of
that limit, that is called f”(c), the derivative of f(x) atx = c.

There are different notations for writing the derivative. Sometimes we write like this: df/dx
at x = ¢. We take that ¢ to the top and write df (c)/dx; it is probably better to write this way:
(df /dx)(c). But think of this as an abbreviation of this expression: df/dx at c.
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Definition
Let ¢ be an interior point of a subset D C R. Letf : D — R. If e
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exists, we say that f(x) is differentiable at x = ¢ and we write the

limit as *(¢) and call it the derivative of f(x) at x = ¢.

df df (¢)
We also write f’(c) as —f‘ , and as A ‘ ?‘E (C)
dx\x=c dx

p
The derivative of f (x) at any point x is written as f"(x), also as d_f_Lﬂ
b »

Notation: prime () means derivative with respect to the independent

variable. '
dy-

If y = f(x), then both y’ = f'(x) = .
If x = ‘Q(}J)‘ then hﬂ[h£ = 8’(\) = dx

=95V T dy’ . ,
Physically, f'(¢) = instantaneous velocity of the moving body at t = ¢, &\/ ;
)

where f (1) is the position of a moving body at time 1.

You see that the derivative of f(x) at any point x is defined at one point ¢. Now, vary this ¢ over
all the interior points of D. At all those points x, the derivative of f(x) will be written as f’(x).
As usual we forget that ¢ here, assuming that it is as if at any x. We will write this as df /dx or as
f’(x); this is just a notation. We should be a bit careful about this prime notation. Here, prime
means it is df /dx; where x is the independent variable of f, that is why we write dx here, and that
is what prime means.

That means, suppose y is a function of x, then we would write y’(x) and also as dy/dx. If
we consider x as a function of y, say, x = g(y), then x’(y) is written as g’(y), which is same as
dx/dy. It is with respect to the independent variable we are taking. So, prime means derivative
with respect to its independent variable. This notation will be very handy. We will see how.

Let us consider an example and apply this notion. Suppose f(x) = x> — x>

+x —2. The question
is whether this function is differentiable at x = 1? All that we have to do is, find the ratio and find
the limit. Now that x is 1, [f(1 + k) — f(1)]/h is the ratio and we want to find its limit as & goes
to 0. If this limit exists, then we would say “yes, it is differentiable at 1, and that value of the limit
is the derivative”.

So, letus work out: f(1+h)=(1+h)?>—=(1+h)?>+(1+h)=2, f(1) =13 =124+1—2. Then,
f(A+h) = f)=[(1+h)?=13]=[(1+h)?>=1%2] +[1+h—1]. We expand and see that there
is always an 4 in each of the bracketed quantities. Now, we can cancel this & and simplify. It gives
R(1+h)?+(1+h)+12] =h[1+h+ 1]+ hdividedby h,or (1+h)>+(1+h)+1—(2+h)+1.
As h goes to 0, we get the limit as 2.

Or, directly expanding the powers, we have (1 + #)> = 1+ 3h% + 3h + h? and from there you
have taken away 1, so this has gone, you have only this factor. And that gives 4(34 + 3 + h?). This

h gets canceled, you get only 3 in the limit as & goes to 0. Similarly, from (1 + /)% — 1, you get



1+2h+h*—1. So, 1 cancels, h cancels, and you get 2 + h, which in the limit gives 2. Next,
1+ h — 1 gives h, and that & cancels to give you 1. So, the answeris 3 -2+ 1 =2.
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1. Is f(x) = x> — x? + x — 2 differentiable at x = 1? NPTEL
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Hence f(x) is differentiable at x = 1 and f'(1) = 2. .
i sne B h(2ht 244

K+ ht H’7f 3 =21

Since the limit is equal to 2, we would say that “yes, f(x) is differentiable at x = 1 with the
derivative equal to 2, or that f'(1) = 2”.
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Examples 1-3 g:%
1. Is f(x) = x* — x* + x — 2 differentiable at x = 1? NP.;.EL
]imf(1+h) -f(1)

h—0 h
A+ -A+h>+ 0+ -2}-{1?-12+1-2}
= h =%

Hence f(x) is differentiable at x = 1 and f'(1) = 2.

2. Is f(x) = |x| differentiable at x = 0?

0O+ h|-10 h
lim 17— = lim Ll does not exist.
h—0 h—=0 h

Reason: the left hand limit is —1 whereas the right hand limit is 1.
Therefore, |x] is not differentiable at x = 0.

3. Is f(x) = x'/3 differentiable at x = 0?
pr3

. 5, 5 .
lim — = lim &~ does not exist.
h—=0 h =0

Hence x'/? is not differentiable at x = 0. 5

Let us consider the second example. Here, the function is |x|. The question is, whether it is
differentiable at x = 0? Again we would proceed to evaluate the limit of [|0 + &| —|0|] /A as h goes
to 0. We want to find out this limit. This simplifies to |#|/h. When you take limit as & goes to 0,



you may think of the left side limit and the right side limit. That will be easier.

So, when i < 0 but close to 0, || becomes —h. Then, the ratio |2|/h = —1; so the left side limit
is —1. If you take the right side limit, then 2 > 0 and close to 0; it gives |k| = h so that |h|/h = 1.
The limit is 1. Since these two limits are different, the limit does not exist. Therefore, this is not
differentiable at x = 0. That is what we get.

Let us take the third problem. Here, f(x) is given as x!/3. The question is, whether this is
differentiable at x = 0? Again, we would take the ratio. The ratiois [ f(0+4)— f(0)]/h = k'3 /h =
h~2/3. Again, this limit does not exist. This is in the form 1/A; it will blow up. So, the limit does
not exist. Therefore, this function is not differentiable at x = 0.
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Consider this function f which is defined on an interval [a, b]. In our definition of differentia-

bility, we have ¢, and at ¢ when we are computing f’(c), or when we are finding out whether f is
differentiableat at ¢ or not, this ¢ has to be an interior point of [a, b]. That means, in this case, ¢
must be a point inside the open interval (a, b). There are other points in the domain of f, which
are a and b. What happens at these endpoints?

At the endpoint a, if you take any neighborhood, say (a — 8, a + d), this is not contained inside
the domain of definition of the function, which is [a, b]. Only a right neighborhood is contained
inside this, provided we make this 6 small. But whatever ¢ you choose, the left neighborhood is
never contained inside the domain. Therefore, the left side limit does not make any sense. Only
the right side limit makes sense. So, what do we do?

At the end point a, we define the differentiability notion itself first. We say that f(x) is
differentiable at x = a, which is the left endpoint, if only the right side limit exists, because that is
the only relevant thing. That is what this definition says. If f is defined on a closed interval [a, b],
then at the left endpoint « it is differentiable if the right side limit of the ratio [ f(a + h) — f(a)]/h



exists. Here, 4 is assumed to be positive.
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Letf : [a,b] — K be a function.
1. We say that f(x) is differentiable at x = a iff
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] lm M ex |_ Sts.
h—0+ h

In such a case, the value of this limit is called the the derivative
of f(x) atx = a, and is denoted by f’(a).
2. We say that f(x) is differentiable at x = b iff

lim f@+ M —f®)

exists.
{1—30— h

In such a case, the value of this limit is called the the derivative
of f(x) at x = b, and is denoted by f'(b).

Similarly, at b, the left side neighborhood makes sense. But the right side neighborhood is
not contained inside the domain. So, we will say that the function is differentiable at x = b if
the left side limit exists. Here & is negative. What is the meaning of % is negative here? If you
write h = —k, where k is positive, then the ratio gives [ f(b — k) — f(b)](—k), which is same as
[f(b)— f(b—k)]/k. Here, k goes to O+. Also, you can write the limit this way.
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Differentiable on S %
That is, for f : [a, b] — E, NPTEL
i . fla+h)=fla) . f(b)-f(b-h)
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Similar definitions are used when the domain of f(x) is an interval of
the form [afb), (a,b]. la,o0) or |b,co).

So whatever value we get from this limit, they will be taken, by definition, as the derivative



of f at the endpoints. When x = a, we say that this right side limit is equal to f’(a). And when
x = b, we will say that this left side limit is equal to f’(b). That is how we give definitions of
the derivative at the endpoints. We may not have to worry about this now. Of course, when time
comes, it will be helpful to use the notion of differentiability at the endpoints.

Suppose I have a function f(x) defined on [a, b] to R. At a, we can write this as the right side
limit, and at b, it is the left side limit, which is same as limit £ goes to 0+ of [f(b — k) — f(b)]k,
or we write the same thing using 4. This way also it becomes helpful, because you are used to
thinking in terms of 4 to be positive. But we should always remember that / can be both positive
and negative, when we take the limit as & goes to 0. At the end points only, this O— and this 0+
come up. The same way we can define at the endpoints when f is defined on intervals of this type.
Here, at the left side endpoint a, the limit should be taken as 7 — 0+.
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Differentiable on §

That is, for f : [a,b] — R,

f'ta) = lim f—(ﬂ +4) —f(@)

h—0+ h
f'(b) = lim fa+h-f@ lim M
h—0- h h—0+ h

Similar definitions are used when the domain of f(x) is an interval of
the form [a, b), (a,b], [a, o) or [b, o).

For a subset S of the domain of a function f(x), we say that f(x) is
differentiable on S iff f(x) is differentiable at each ¢ € §.
"—'_’—\_“—.____________,—_\

In particular, when a function f(x) is differentiable on its domain, we

say that the function is differentiable.

When f (x) is differentiable, we wrileﬁ E’(_a;}as a new function obtained § \/ \
!\\S! A\ ﬁ

from f(x) whose value at x = cis 1 (c).

—_—

Here, it is the left side limit at b; here again, the right side limit at a and so on. So that is how
our definitions will carry over.

Now, if the function is defined on a set, we would say that the function is differentiable on that
set, if and only if it is differentiable at each point of the set. Just like your idea of continuity, we
define at a point, then generalize over all points. That is the way we are fixing the terminology.

So, it is differentiable means differentiable at every point. When a function is differentiable at
every point of its domain, we would say that the function is differentiable, forgetting this S. If S is
a subset of the domain, then ‘differentiable on S’ is also okay. But once you say only differentiable
that means it is differentiable on its domain.

The thing is, if f(x) is differentiable at every point x inside its domain, then f’(x) at x = c is
f’(c). Atx equal to another point d, its value is f’(d), and so on. So, f’(x) becomes a new function,

obtained from f(x). This is called the derivative of f(x) as a function, not only at a particular



point. It is something like the derivative of f(x) evaluated at x = ¢ gives f’(c). Both the things are
there in the notation, though this is not our definition. We have defined f’(c) independently and
we give that as the value of f’(x) at x = ¢ now. Both the notations coincide.

Let us take another example. We consider the function f(x) = |x|. For this we had already
considered whether it is differentiable at x = O or not. The domain of this function is the whole of
R; it is defined from R to R. Of course, its range is only the non-negative real numbers. Negatives
are mapped to positives. Once you ask whether this is differentiable or not, we have to be concerned
about all points, all real numbers. At each real number we have to see whether it is differentiable
or not. And our experience says at 0 there is some problem. But if if ¢ is less than O or greater than
0, there can be different values, altogether different types of values for the derivative at c.

(Refer Slide Time: 19:38)

Example 4

Consider the function f(x) = |x|. Its domain is (—oo, 00).
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Let us consider first ¢ > 0. We want to find whether the function is differentiable at ¢ or not.

As ¢ > 0, it is not equal to O; say O is here, and c is here somewhere. Now what happens, c is an
interior point on the right side of 0. We have defined |x| conditionally, that is, |x| = x if x|geqO,
and |x| = —x if x < 0. When x > 0, we are considering the right side. Even this is possible, but we
know the result at x = 0. On the other side, right interval, it is an interior point means there is a
neighborhood which is inside the set; even for O that is true.

Let us see what happens at this point ¢, where c is positive. Since we will be taking the limit,
we can really make our % to be smaller. Let us restrict our % to be smaller than c¢/2. So that this
¢ + h will not go beyond O.

So, one we can really use the first one, because ¢ > 0. Let us restrict that i, anyway it goes to
0. So, ¢ + h is now positive; it is lying to the right of 0; whether # is positive or negative, it does
not matter. Then this limit of the ratio [|c + k| — |c|]/h will be (¢ + h — ¢)/h, which is equal to 1.
So, f’(c) = 1. Because h is small, we can limit it to a convenient neighborhood.



Now, when ¢ < 0, we can again see what is happening. It is 0 and ¢ < 0. We can limit our
h to be smaller than say, |c|/2 = —c/2. It will be somewhere here. Then ¢ + & will remain here
anyway, will be always negative. As ¢ + h < 0, whether 4 is positive or negative, we compute the
ratio. Now, [c + h| = —=(¢ + h) = —c — h. Then, |c + h| — |c| = —c — h — (—c). This ¢ gets canceled
and —h/h gives you —1. Therefore, when ¢ < 0, f’(c) is negative.
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Consider the function f(x) = |x|. Its domain is (—oo, co), ]

Let ¢ > (. Restrict (the small) & so that || < ¢/2. Thenc+ h > 0
whether /1 is positive or negative. Now,

. _lc+hl=lc|l . c+h-c
f'(c) =lim——— =lim —— =1
:—)U h fi—0 h -
Let ¢ < (. Restrict i so that || <¢/2. Then ¢ + h < 0 whether & is v li]}

positive or negative. Now,
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Thus, f(x) is not differentiable at x = 0. £1(==
So, f(x) is not differentiable, but f(x) is differentiable on\(—oo, (}I and 1
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[f(x) is differentiable on [0, o). — 4

And already we know at x = 0, its left side limit is —1, its right side limit is +1. So, f (x) is not
differentiable at x = (. But taking care of our definition of right endpoint or left endpoint, suppose
you consider f to be defined on only a subset, (—oo,0]. That is, this is our S now. On this subset
we want to find whether it is differentiable or not.

In this interval (—co, 0], O is the right endpoint. So, the limit of the ratio will be taken when &
remains negative. At 0 it is the left side limit that becomes —1. We know for ¢ < 0, its limit is also
—1. Therefore, f’(c) = —1 for any point ¢ € (—oo0,0]. Similarly, when you go to the right side, the
right side limit is relevant. That gives you the right side limit of the ratio as 1 at 0. So, whenever
¢ € [0,0), f'(c) =1 and not —1.

So, we have different subsets; each includes 0; here f’(c) is —1 but here, it is +1. That goes
along with our definition of one-sided derivatives, for, the derivatives at the endpoints are really

one sided now. It happens because the domains are like that.



