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Welcome back. In the last video I did a few problems. So, today we will continue this problem 

session and I want to do a couple of very important exercises in field theory that will be 

constantly used in the later part of this course on Galva Theory.  
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So, the first one is a fairly simple statement that you may have seen in you, you would have seen 

in any field theory course. So, let me just recall this. Let F be a field and let K and L be two 

extensions of, extension fields of L of F. So, suppose alpha in K is algebraic over F. Let sigma 

from K to L be a, be an F homomorphism of fields. So, the situation is this. So, you have K and 

L are two extensions of F, alpha is in K. It is algebraic over F. I am not saying K is algebraic 

over F because that is not required for this. I am only going to use the fact that this particular 

element alpha is algebraic over F and sigma is a F homomorphism.  

Every time I draw a picture like this, it is understood that sigma is an F homomorphism. So, then 

show that 2 things; sigma of alpha which is in L is algebraic over F and the irreducibility it is 

algebraic, so we can talk about irreducible polynomial of sigma of L of F over sigma of alpha 

over F is the same as irreducible polynomial alpha over F. So, as I said, this is a very, very 



standard result and it is very easy to prove this. But I thought I will mention this because it 

comes up in the next problem which will be of much more importance for us. So, this is clear. In 

fact, we will do second part first and then everything will follow. 
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So, let us say F is the irreducible polynomial of alpha over F so this is the situation. So, I claim 

that and let sigma of alpha be beta. So, for simplicity I want to call that beta. So, we, we will 

show then the problem is solved because it will obviously prove that this is algebraic because it 

beta is the root of a polynomial over capital F and F is irreducible, so it must be irreducible 

polynomial. So, this is the that is all there is to it.  

So, let us say Fx equals an xn, an minus 1, xn minus 1, a1x plus a0. So, here remember, ai is in 

capital F because this is a polynomial over capital F. Now what is F beta? F beta is an beta n, an 

minus 1, beta n minus 1, a1 beta a0. But this by using the fact that beta is sigma alpha n. 

Remember if sigma alpha is beta, sigma alpha whole square sigma. So, that is beta square. So, 

that is sigma alpha square. So, that is what I am going to use but this is actually because so now 

the other important thing. So, this is the important point. Important point is sigma of ai is ai for 

all i since sigma is an F homomorphism. So, this whole thing will not be true if sigma is not an F 

homomorphism. So, I am going to crucially use that fact.  

So, that allows me to write this as sigma n. So, I will skip some of these things. I am not 

changing anything here because sigma an is same as an, so that I am allowed to do. So, now 



using the fact that sigma is an homomorphism, I can pull sigma out all the way. So, that means 

sigma of an alpha n plus dot, dot, dot, a1 alpha plus a0. But that is 0. So, this part is because 

right, so that is just F alpha. So, F alpha is 0 because F is irreducible polynomial of alpha over F. 

So, that means F beta is 0 and we are done. So, that is the proof that if you have a field 

homomorphism an element can go to a field homomorphism over a Bayes field. An element can 

go to other roots of its irreducible polynomial.  

(Refer Slide Time: 05:50) 

 

So, this is an extremely important. This is a very easy but very important restriction on the 

images of, of an algebraic element under a F isomorphism. So, just illustrate this.  



(Refer Slide Time: 06:23) 

 

 

So, if you have very quickly I will do this, q square root 2 over Q and you, you consider this. So, 

in our situation I will take this to be K. I will take this to be L and I will take this to be F. So, this 

is the situation. K, L are any extensions and I am thinking of this as a Q homomorphism. So, this 

so we, we know that sigma of root 2 is must be either root 2 or minus root 2. So, because 

irreducible polynomial of root 2 is X square minus 2, which has only 2 roots. So, this is the 

simplest example where you can see that root 2 cannot go to anything else.  

This you can directly prove of course but this general statement here allows you to conceptually 

visualize this. So, this tells me that root 2 can go to other roots of its irreducible polynomial 



which of which there are only 2, so root 2 or minus root 2. And now you can apply this problem 

to any situation. You can take, so if alpha is the root of this, I am just randomly writing an 

example. So, and sigma alpha where sigma is some K to C, alpha is here, must be 1 of the 3 

roots. This is a very powerful restriction, as I said for algebraic elements.  
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And one immediate application of this I will do and this is going to be very important statement 

for us is the following. Let K over F and I wanted to also I mean, after this I will write one more 

exercise and that is we will stop the video after that. So, let K over F be an algebraic extension. 

Now I am taking an algebraic extension. Let sigma from K to K itself, it is very important that I 

have K to K here be an F homomorphism, then sigma is in fact an isomorphic. I want to prove 

this, solution. So, remember it is an F homomorphism. It takes K to K already we have sigma is 

an F homomorphism.  

So, of course sigma is an F isomorphism is a statement that is an F homomorphism is given. It is 

injective is given. So, only remains to check sigma is surjective because it, it takes K to K. It is 

homomorphism, it is injective. Only missing point for a homo isomorphism of fields is 

surjectivity. So, let us take an arbitrary element and show that it is in the image. So, let alpha be 

in K. So, you have alpha here.  
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So, let us now consider the irreducible polynomial of alpha over F. Recall that K over F is an 

algebraic extension, so every element of K is algebraic over F. So, I can ask for its irreducible 

polynomial. Let F be the irreducible polynomial of alpha over F. Let alpha equals alpha 1, alpha 

2, alpha n be the set of all roots of F in K. Note that F may not split in K we are not given any 

such assumption. All we know is that K over F is an algebraic extension. So, it will have some 

roots, may not be all root of F in an arbitrary splitting field. But I do not care about that. I will 

take all the roots.  

We know there is 1 root at least because alpha is there. Let us take all the roots, it is a finite set 

that much we know because F is a specific polynomial. Its roots will be finitely many. So, let us 

call this set A. So, A is the set of roots of small f in capital K. Now I claim that f of alpha i is 

equal to alpha j for all i. This is by the previous exercise. That is the point. So, image of alpha i 

must be another root of the irreducible polynomial namely F. But the only roots of the 

irreducible polynomial are these. So, this is immediate consequence of the previous exercise. 
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So, now that means so we can restrict f to A. So, f remember is a function from K to K. A is a 

small subset here, K is an infinite field potentially so, A is a finite set. In general f of A could be 

some other set in K, but we just showed that this implies basically that f of A is contained in A 

because you take an element of A, apply f to it, you land again in A. So, f can be restricted to A 

to Q, a map from A to A. Now look at I will call the restriction also f or f sub A. So, it is a 

restriction of f to only A. It is injective because f is. So, f is a security injection. So, 2 distinct 

elements in capital K go to 2 distinct elements in capital K, so 2 distinct elements in capital A 

obviously go to 2 distinct elements in capital A. 

But fA is an injective map from a finite set to itself. So, fA must be surjective. So, this is a trivial 

statement, so you have finite set with 4 elements and you are considering maps on that element 

that set to itself but you also know that it is injective so this goes to this, maybe this goes to this, 

this goes to this, this goes to this. So, there is no way that it fails to be surjective. So, it has to be 

surjective. That is, there exists alpha i in A such that f of alpha i is alpha 1 which is alpha 

because alpha is 1 of them? So, maybe alpha is this. So, this must map to alpha. So, alpha is in 

the image of K itself. So, that means F is onto.  

So, onto remember equal surjective, surjective is a synonym for onto. So, that means F is an onto 

function which is exactly what we needed to prove. So, this completes the solution. So, this is 

going to be a very, very important statement for us, namely that if you have an algebraic 



extension and you are looking at maps from K to K this is very important for us. Then it is an 

isomorphism. So, if K, this K is different from this K, then we cannot say any statement like this.  
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So, that is the statement I want to show that if you know that you have an algebraic extension 

and a homomorphism from it to itself then it must be an isomorphism. So, for example if you 

take Q, cube root of 2, zeta 3 or omega as it is called. So, this is the splitting field of over Q. So, 

this is K. So, any map you take it must be an isomorphism. But if you take to C, so let me not get 

into this. So, this is all I am saying. So, on the other hand if you take Q adjoined cube root of 2, 

you can take cube root of 2 times omega. So, omega is the primitive third root of unity, that must 

be an isomorphism. So, cube root of 2 times omega that is another root of the irreducible 

polynomial of cube root of 2.  

So, this is a valid map. So, here K is this and L is this. So, it is an isomorphism but it is from K to 

L. So, I may have confused you a little bit but I just want to emphasize that you can have 

different fields. So, for example yeah, so maybe I could have just taken C here. So, then I will 

send cube root of 2 to cube root of 2 omega. So, it is an algebraic extension but it is so or I can 

take some big fields so K adjoined cube root of K adjoined om cube root of 2 omega comma 

omega, Q adjoined cube root of 2 comma omega. So, here L is algebraic over Q, K is algebraic 

over Q but this is not an isomorphism, is not surjective rather so L is not K. So, that is why it 

fails.  



So, here it is very important that I have same field, so same field. Then you have a surjective 

map otherwise you have an isomorphism but onto something smaller than L potentially. So, that 

is all I am emphasizing here. Ss, now let me just give some terminology and stop this video.  
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So, if you have an element so K over F is an algebraic extension rather field extension, alpha is 

algebraic over F. And let us say F is the irreducible polynomial of alpha over F, roots of F are 

called conjugates of alpha. So, this is the terminology, conjugates of alpha are the roots of its 

irreducible polynomial. So, alpha is a conjugative of itself and other roots are called conjugate 

other conjugates of alpha. So, the problem here, fourth problem here says that image of an 



algebraic element must be a conjugate of that element. So, conjugates are they are only finitely 

many conjugates and they are the only possible images under a field of F homomorphism, 

finitely many conjugates for an algebraic element.  

So, let me just write one more exercise because I meant to do this or I would I would not give 

you the details now because I am running out of time. So, I just want to give you a quick stare 

argue I mean, very sketchy argument and ask you to finish it. So, let F be a field. The prime field 

of F is defined as follows. So, you consider the unique ring homomorphism from Z to F. There is 

always a unique ring homomorphism from Z to any field or any ring in fact commutative ring 

with over unity so, take that.  

Let i be the kernel of fine so we know i0 in which case Q is contained in F because Z is then a 

sub ring of F. F is a field so Z will con and Z is contained in it so all ratios of integers will be 

contained in it, so Q is in F. Otherwise i is pZ, p prime in which case z mod pZ is contained in F. 

So, any field will continue the Q for z mod pZ for a prime p. So, the prime field of F here is Q in 

this case and prime field of F is z mod pZ. So, as you can easily see this is all easy or not yet 

writing the exercise. 
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So, basically what I am saying is that characteristic of F is 0 implies prime field of F is Q if 

characteristic of F is P prime field of F is z mod pZ. So, now let K and L be 2 fields of same 

characteristic and let F be their prime field. So, remember prime field is think of it as the base for 



any field. So, every field of characteristics 0 sits above Q. So, Q is all the way down, all fields of 

characteristic 0 are above Q. Similarly if F is a field of characteristic 2, it lives above z mod Qz 

and all fields of characteristic 2 live above z mod 2z. So, basically what we have is that, all fields 

lie above this. Similarly, all fields, similarly z mod pZ for all primes.  

So, now you if take 2 fields in any box here that is what I am taking, K and L are here or here or 

here. So, and then take be a field homomorphism, then Sigma is in fact an F homomorphism. So, 

any field homomorphisms, so if F and L K and L are 2 fields which have the same characteristics 

characteristic and F is a prime field so if F is in the Q or z mod pZ. Any sigma fixes every 

element in F. So, this is a very easy exercise. We briefly mentioned this 1 characteristic is 0 but 

the same idea carries over in general. So, this is an exercise for you. I would not do this but the 

point is 1 must go to 1. So, use once 1 goes to 1, sigma 2 is 2, minus 1 is minus sigma minus 1 is 

minus 1 and so on. And generalize that to show that it fixes the prime field.  

So, this is the, these are a few exercises that I wanted to do in detail for you so that you are more 

comfortable with the concepts that I recalled. So far in the course we have really done nothing 

more than recalling and next video we are going to start our study of Galva Theory. Thank you. 


