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Welcome back. So far we have started recalling the basic notions in group theory, ring theory, 

field theory that we require in order to study Galois Theory. So I want to do one more video 

where I recall some important results in the field theory. So last video, I talked about finite fields 



and we talked about splitting fields. So the next topic I want to quickly recall. Now I will again 

not prove these things in detail and my goal is only to important, recall important facts. 

So, the important notion that I want to recall for you is the notion for algebraic closure of a field. 

So let me first define a field F, let me use K. A field K is called algebraically closed. It is called 

algebraically closed if every non-constant polynomial small f over K has a root. This is a very 

simple statement; every polynomial non-constant of course because constants cannot have, non-

zero constant cannot have a root. 

So, every non-constant polynomial has a root in K, equivalently every any irreducible 

polynomial of positive degree. I will put that in brackets just to avoid constants again. Every 

irreducible polynomial in Kx has degree 1. Clearly if a polynomial has roots it is not irreducible. 

So these are equal. I mean one can check it is a trivial verification that these 2 conditions are 

equivalent.  

So if you have a degree 2 or higher polynomial, if it has a root, it cannot be reducible. And if you 

have and the only irreducible polynomials that is given means any polynomial of degree 2 or 

higher will have to factor because its Kx is ufd and you can keep factoring until you get a linear 

factor which corresponds to a root.  

So this is what an algebraically closed field is, the standard example for this is C, the complex 

numbers is algebraically closed. C stands for the field of complex numbers. It is algebraically 

closed and this is the statement of fundamental theorem of algebra that has lots of different 

proofs, which you may have learned in some other course. So this is the fundamental theorem of 

algebra.  
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On the other hand R or Q are not algebraically closed. Let me shorten this by saying. This is 

because X square plus 1 has no root in R or Q. So these are not algebraically closed. Now let me 

define the algebraic closure of a field. Let F be a field and algebraic closure of F is a field 

extension K of F. So K must contain the field F such that it has 2 properties. One, K is 

algebraically closed. K must be algebraically closed and very important, the extension K over F 

is algebraic. So the first condition is not enough.  
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So, again the standard example for us is C is an algebraic closure of R, because C is algebraically 

closed and C colon R is 2. So it is a degree 2 extension. So it is algebraic. I mean this is trivial. C 

is algebraically closed and C over R is algebraic. On the other hand C is not an algebraic closure 

of Q.  

C is algebraically closed fine, but it is not algebraic over Q. So example is transcendental over. 

So it is not algebraic. So the extension is not algebraic. So in order to be a algebraic closure you 

need to have 2 properties. It has to be an algebraically closed field and it has to be an algebraic 

extension of Q. So the question is, if C is not the algebraic closure, what is an algebraic closure?  
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Does it exist? And here is where I will state it as a theorem. I do not want to go to the proof of 

this because it takes me away from what I want to do. It is a nice proof. It uses Zorn’s lemma but 

it does not reveal anything for us as far as this course is concerned. So later on if I have time I 

will just make a separate video just covering this theorem which says that every field has an 

algebraic closure, simple statement and the proof uses Zorn’s lemma so you have to construct a 

series of fields and show that you can add roots of all polynomials.  

Remember we can add roots of 1 polynomial, namely we can construct splitting fields. But to 

construct algebraic closure you have to do, you have to add root of all polynomials. At the same 

time make sure that you do not introduce transcendental elements. So this is proof is not difficult, 



uses Zorn's lemma which you may have heard learned before. It is, for example it is used to 

show that every commutative ring has a maximal ideal.  

So we will not do the proof for today. But it is a standard fact you can find this in any textbook 

on algebra. So every field is an algebraic closure. The question then is how many algebraic 

closures can it have? Is it unique? And that is what I want to again state as a theorem without 

getting into the proof. But before stating that I want to develop I want to express a few theorems 

about extending field homomorphisms which are going to be useful for us later.  
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So, I want to also recall for you what is a splitting field. So let F be a field and let small f be a 

polynomial over the field F. Then we know that have small f has the splitting field over F. I 

mentioned this last time you can add roots 1 by 1 and eventually reach a field where you have all 

the roots and that field is generated by the roots of small f.  

So some important facts. I mean the, these are standard facts. So note that in say K, note that K 

over F, K is a finite extension of F. It is in fact, we can also talk about its degree but first point is 

it is a finite extension. Because remember, K is generated by the roots. So you have extensions 

like this.  
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So this is finite because it is generated by a single algebraic element. This is finite and so on, so 

the whole thing is finite. In fact this tower also tells you that if n equals degree of F then K colon 

F is less than n factorial because this is at most n cause F small f is a root of is a polynomial that 

alpha 1 satisfies.  

So its irreducible polynomial will have degree less than equal to small f because it defines small 

f. And this is less than equal to n minus 1 because now you can clear out x minus alpha 1 from F 

and you look at the degree n minus 1 polynomial that you get and so on. So this is true and you 

can have equality sometimes and it can also be a strict inequality sometimes. So 3 examples that 

I mean we have couple of examples that will illustrate this.  
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You take F to be Q and small f to be x cube minus 2, then K is actually Q adjoined cube root of 2 

and omega where omega is primitive 3rd root of unity. And this degree over Q is 6, which is 3 

factorial. On the other hand if you take F to be Q and small f to be x cube minus 1. Here K is 

actually just Q adjoined omega and the degree is 2 here and the irreducible polynomial is x 

square plus x plus 1.  

This is of course less, strictly less than 3 factorial and one final example if you take F to be the 

finite field of P elements and you take small f to be X power p or minus X. The splitting field 

small f over capital F is nothing but the finite field with P power R elements.  
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This is something that we have, we have mentioned as part of our structure theorem of finite 

fields. The unique field of order P power R contain is consists of roots of this polynomial x 

power p power r minus x. So now what I want to address first before getting to the uniqueness of 

algebraic closure is uniqueness of splitting fields. So the splitting fields unique. So when we ask 

such a question in mathematics it means, are they isomorphic?  

So, are they isomorphic? In fact we want them to be isomorphic over the base field. Are the 

question is, are they F isomorphic? Remember I talked about F homomorphism of fields in the 

previous video which means that there is an isomorphism which fixes F point wise. 
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And in this context I want to introduce this very important extension theorems that we will use at 

a few places in the rest of the course. So I want to state one simple case first which I call 1, 

extension theorem 1 and then I will generalize this to an arbitrary situation. So this is the 

following. So I will not write maybe the full statement or let me actually write the full statement 

and also draw a picture.  

So, let F be a field, an arbitrary field. Let K over F be an extension. In fact, I could have just 

maybe we can write like this. Let K over F be an extension of fields. Let alpha be an element of 

K which is algebraic over F. So I am really interested in knowing F alpha not in K. So on the 

other hand let L be a field.  

Before that and let small f be a polynomial in capital FX, be the irreducible polynomial of alpha 

over F. Now let L over K be another field extension. In fact let me write it like this. Let L be a 

field with a field homomorphism. So F is in fact isomorphic to subfield of L, but I want to state it 

in this generality. Remember any field homomorphism is by definition injective because the 

kernel of a ring homomorphism is an ideal.  

A field homomorphism sends 1 to 1. So the kernel cannot be all of F. And any field has only 2 

ideals, namely F and 0. So the kernel has to be 0. So it is an injective map. So that means F is 

isomorphic to its image which is a subfield of L. Suppose, sigma of F has a root in L, when I 



write sigma of F I mean the following. So let me just write it like this. So sigma is a function 

from F to L.  
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So sigma naturally entrench to a function from fx to lx. I will use by abuse of notation, same 

letter sigma to denote that. So here X goes to X that is all and constants go to if A belongs to F, it 

goes to sigma of A. So then basically what it does is sigma of a polynomial is simply sigma of an 

x power n, sigma of a1 x plus sigma of a0. So that is what sigma of F is and I am now assuming 

that sigma of F has a root in L.  

So, if that is the case then there exists a field extension sorry there exists a extension, there exists 

a field homomorphism. Let me write this like this homomorphism, sigma prime from F alpha to 

L which extends sigma. So what I mean is, that is sigma prime restricted to F is sigma. So all this 

will become clear if I draw just a picture. So here F here, F alpha here, of course F alpha sits in K 

but K is irrelevant for in this theorem.  

And then I have a function from F to L so and F, sigma of F has a root in L. So I will call that 

beta. So beta is an element here. So now I am claiming that there exists a function from F alpha 

to L which I am calling sigma prime which makes this diagram commutative, which means that 

if you take an element in F apply sigma, you get something in L. But you can also think of it as 

an element in F alpha and apply sigma prime, you get the same value.  



So, that is how, that is what we mean when we say sigma prime extends sigma. So I claim that 

such a thing exists and the proof idea is very simple. So we know that F alpha, this is standard 

field theory is isomorphic to fx modulo small fx. This I claim is basically equal to sigma of F, X 

modulo F prime X or rather sigma of F. So if you wish you can actually, so sigma F is a field, 

image field and that is contained in L.  

So, if you wish you can call that F prime. So what I am really doing is F prime X modulo, 

modulo F prime sigma F of X. So that is of course contained in L. So this F prime, this is 

actually nothing but isomorphic to F prime beta. So beta is here. So this is F prime beta which is 

contained in L. So and this is the map that I construct. So F is contained in F alpha. F alpha is 

isomorphic F prime, F prime beta which is contained in L.  

So, this composition gives me the function sigma prime and the way construction goes it is clear 

that it extends sigma. So the sigma prime extends sigma, namely that sigma prime restricted to F 

is sigma. So this is the construction. So if this is not clear, just pause the video, think about it, 

this are very standard things.  

(Refer Slide Time: 20:14) 

 

So, this part is clear, using this basic ingredient we have the extension theorem 2 which is much 

more general but essential idea is this extension theorem 1 ends Zorn’s lemma. So you have to 

generalize this more in a more general situation. So here you have the following. So let K over F 

be an algebraic extension now.  



Earlier I took an algebraic extension generated by a single element. Now I am taking an 

algebraic extension without any assumptions and let L be an algebraically closed field with a 

homomorphism, with a field homomorphism of course. I do not need to always say this field 

homomorphism sigma from F to L. 

So, the picture is we have F, K, L, sigma is a field homomorphism and this is an algebraic 

extension. Earlier it is similar to the earlier picture except that I am not doing for F alpha, I am 

doing for entire K. And now I am assuming L to be algebraically closed, not just a field where 

this particular polynomial has a root. So L is algebraically closed. Then there exists a field 

homomorphism, sigma prime from K to L which extends sigma that is as obvious as before.  

It is simply saying that the restriction of sigma prime to F is just sigma. So that means there is a 

map here which I call sigma prime which extends sigma. So this is a commutative diagram 

which means that if you take an element in capital F to repeat what I said earlier, take an element 

in capital F. So if A is in capital F then sigma prime of A, think of A as an element of K and 

apply sigma prime or apply sigma to it, you get the same answer. 

So, this is what we mean by extension. This is essentially a combination of such things. But 

remember this need not be a finite extension. If it is a finite extension K over F, one can just do 

finitely many steps of such things and argue that one gets the extension sigma prime. But for 

non-finite algebraic extensions, one has to use Zorn’s lemma.  
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So, the proof uses extension theorem 1 and Zorn’s lemma. So this is a standard proof. Again you 

can do this, read this in any book. You look at subfields of K where you can extend to which you 

can extend sigma. So of course, that is an non-empty set because F is contained in it. And then 

you look at all such things, family of all subfields of K to which you can extend sigma and then 

you show that there is a partial order in which you can given by the inclusion, every totally 

ordered subset as a maxima element.  

So, the family itself has a maximal element. And then you argue that it has to be K, because if it 

is not, you can extend it further by using the 1st statement because you can always extend it to an 

algebraic element, a single algebraic element. So this in particular gives me 2 corollaries which I 

want to state. And in the video there corollary 1 is let F be a field and let F be a polynomial over 

it then any 2 splitting fields of small f over capital F are F isomorphic.  

This proof is rather easy because you can take. You can in fact use just the extension theorem 1 

because you have a finite extension, splitting fields of finite extensions. So you can, no need to 

use Zorn’s lemma just induction and extension theorem 1 will give you the required statement. 

So all you do is you take L also to be F. So you can construct this or you can figure out how to 

do this. It is a good exercise.  

So, in fact let me write the 2nd corollary also and then leave both as an exercise. So any 2, so 

again let L be a field, any 2 algebraic closures of F are F isomorphic. So these are in both 



statements that we will constantly use and both are good exercises. So in my problems session 

later on I will try to do this explicitly using the extension theorems.  

So, the point is because any 2 splitting fields are F isomorphic, we often say, we can often say 

the splitting field though we have to keep in mind that it is only up to isomorphism and the 

algebraic closure. So this is an important conclusion for us. We can talk about this splitting field 

of a polynomial or the algebraic closure of a field.  

So, in particular you know that Q has an algebraic closure and that will sit inside C. So maybe in 

a exercises we discuss this. But even otherwise even apart from the corollaries, these extension 

theorems themselves are very important to us. Both extension theorems are very important. 
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These extension theorems are useful for us. So we will use them later. So make sure that you 

understand the statements. I am again reminding you that I am not proving this. These are 

essentially, I proved the 1st one but 2nd one is a standard argument using Zorn’s lemma. So I 

will not do this. But please understand the statement because that will be useful for us later. So 

let me stop here and then in the next video will continue with Galois Theory. Thank you. 


