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Welcome back we are doing some problems. In the previous session we exhibited polynomials 

whose Galois group is S5 or more generally Sp, where p is a prime number. And thereby we 

showed that these polynomials cannot be solved by radicals and these solutions require a little bit 

of work, which I did not conclusively prove, but these are left to you to explicitly construct, 



show that the polynomials we constructed will have only 3 real roots and 2 non real roots. So, 

that is an easy exercise that you can do.  
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So, now let us continue with the second problem. So, the first problem was to do SP, and we 

looked at some interesting examples of that, but let us now do compute Galois groups of some 

polynomials. So, I am going to go a little fast with these examples, I will indicate what needs to 

be done and maybe leave some exercises for you to do along the way. So, let us do some simple 

things first, I am in for example, X square plus 1. So, I will simply write the Galois group is here 

Z mod 2Z and if you take X square minus 1, the Galois group is trivial.  

So, if you take a degree 2 polynomial its splitting field will have Galois group, a subgroup of S2. 

So, if the polynomial is irreducible, it will be all of us to which is Z mod 2Z if it is not 

irreducible, then it will be trivial. So, I just want to set that simple case first. Now, let us look at 

cubics so that has degree 3. So, we know that and we assume that f is irreducible. Otherwise, it 

will be a product of linear and degree 2 which we have already considered so there is no reason 

to look at it again.  

So, we assume f is irreducible, then Galois group of f is either A3, if discriminant of f is a square 

in f, wherever you are, f is defined, so the base field is F, then if it is a square it is and if the 

discriminant is not a square. So, this is just to recall what we have done. It is not a square that 



means it is S3 all of S3. So, a useful formula that can be proved using some tedious computation 

is the following.  

If you take a polynomial, irreducible polynomial of sorry, if you take a degree 3 polynomial 

without any degree 2 term something like this, for a and b are rational numbers let us say, the 

discriminant is actually minus 4a cube minus 27 b square, this is an exercise I have written down 

the discriminant for an arbitrary degree 3 polynomial earlier in the course, but if you apply that 

with the quadratic term being 0 you get this. So, just using this, let me just give you 2 examples.  
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So, if you take X cube minus X minus 1 in Q X, so check that it is irreducible. I am going to give 

you a quick reason why in a minute, but it is irreducible 1 can check then what is the 

discriminant? This is equal to, this is a polynomial of this form, it is called a depressed cubic 

meaning expert one is not there. So, a is minus 1. So, minus 1 cube is minus 1. So, that is 4, b is 

minus 1, b square is 1. So, this is minus 23, not a square. So, the Galois group is S3.  

On the other hand, if you take X cube minus 3x plus 1 again check that it is irreducible. Then 

discriminant is minus 4 times minus 3 whole cube that is minus 27. It will be plus 27. Because 

minus 27 minus 4 minus 27 b square so that is, this is minus but then it will be 4 times 27 minus 

27, b is 1 so that is minus 27. So, this is 3 times 27 which is of course 9 square. So, this implies 

Galois group is A3, it is a cyclic group of order 3, in this case it is S3. So, I wanted to do these 2 



examples, because I wanted to indicate that both cases occur. So, this is not particularly 

surprising to you, we have discussed these such things in the past.  
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So, just to give you one test for irreproducibility which maybe I have not discussed earlier in the 

course, in the beginning when I gave you some irreducibility tests, I do not recall if I did this, so 

usual things Eisenstein reduction modulo p, but this is also very useful. So, this is if f is any 

arbitrary polynomial like this with integer coefficients and of course, we assume an is nonzero, 

but we will also assume that an times a0 is nonzero. So, both the leading term and the constant 

term are nonzero, leading coefficient and constant coefficient are on nonzero.  

So, then let us take two integers r and s which are co prime. So, co prime, then r by s is a root of 

f. So, rational root tells whether r by s a given rational number is a root or not, it at least says 

when it cannot be root then our divides is a0 and s divides an. So, this is easy proof. So, a general 

version of this is from Eisenstein criterion, but you can or Gauss lemma but you can directly do 

this because, if you do this is standard, so if r by s is a root, you have a by, an times a1 r by s plus 

a0 is 0.  

So, this implies an rn plus an minus 1 rn minus 1 s, you multiply by sn I mean, so then you get, 

yeah, so you get a1 rsn minus 1 plus a0 sn equal to 0. So, multiply by clear denominator I mean 

so you get this, but this implies. So, I am just quickly giving you a reason for this. So, by taking 

the last term on the other side, you get r times an rn minus 1 plus a1 s n minus 1 equals minus a0 



sn. So, all the terms except the last one are divisible by r. So, this implies r divides a0 sn but r 

and s are co prime So, r divides a0. So, that is the first part. 

Similarly, you can get s divides an. So, this is very useful especially when you have leading term 

1 or constant term 1 like in these examples, so all you need to check is that here these are degree 

3. So, they are irreducible if they have no roots. So, any root must have, because constant is 1, 

leading term, leading coefficient is 1. So, only possible rational roots are 1 and minus 1 which 

you can quickly check are not roots, 1 and minus 1 are not roots for this.  

So, these 3, these 2 cubic polynomials do not have roots. So, they must be irreducible. So, this 

rational root test is a very nice convenient way of checking the irreducibility of degree 2 or 

degree 3 polynomials.  
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Now, let us go to the quartic case. And again, I am going to take an irreducible quartic because if 

it is reducible, its roots are already in, it is already a product of smaller degree polynomials 

whose Galois groups we have discussed. So, there is no new phenomenon, all you need to do is 

consider irreducible quartics. So, I have to, I want to introduce certain.  

So, then first I want to do some simple ones before I give you some general formulas which help 

us. If you take X power 4 minus 2 as your f its roots are as we know very well, the roots are plus 

minus fourth root of 2 and plus minus i times fourth root of 2. So, fourth root of 2 is a real fourth 

root of 2. So, you take plus minus fourth root of 2 and plus minus i times fourth root of 2 because 



I use a primitive fourth root of unity, every time you have a real fourth root of 2 you can multiply 

by i to get other roots.  

So, let us say alpha 1 is fourth root of 2. So, I want to just explore what happens here. Recall the 

analysis that we have done for quartics, there we had to first consider resolvent cubic, resolvent 

cubic was X minus beta 1, X minus beta 2, X minus beta 3, where beta 1 is alpha 1 alpha 2 plus 

alpha 3 alpha 4 and so on. So, in this case, beta 1 will happen to be. So, if you call them alpha 1, 

alpha 2, actually, so alpha 1 is this, alpha 2 is i alpha, alpha 3 is minus alpha, alpha 4 is minus 

alpha 2.  

So, this is how I define the label the indices, so there are 4 roots like this. So, then beta 1 will be 

actually alpha 1, alpha 2, which will be i times alpha square, so alpha is equal to alpha 2 plus 

alpha 3 alpha 4, so, that is also alpha 1 alpha 2, which is also alpha i times alpha square so 2 i 

alpha square, which is of course, 2 I root. If you took beta 2, which is alpha 1 alpha 3 plus alpha 

2 alpha 4, you see that it is 0. So, that is a simple calculation, and beta 3 is minus 2 i root 2. So, I 

do not want to spend too much time on this, this is just a computation which is not that 

interesting. So, I will breeze pass this. 
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But then we can now compute g that will be X minus 2 i root 2 X plus 2 i root 2 times X, X 

minus beta 2 is 0 X. So, this actually will give you X times X square plus 8 because 2 i root 2 

whole square is 4 times minus 1 times 2. So, this is X cube plus 8x and this is reducible, in fact 



has exactly 1 root in Q. So, if you Now recall the table for quad discrim. So, g reducible, g 

irreducible, d square, d not a square, these are the 4 possibilities, I think this was A4, this was S4, 

this is D2, this is D4 or C4.  

So, g is reducible here and even without looking at the discriminant we know that the Galois 

group of f must be D2 or D4 or C4, because this case cannot occur, because G is reducible. And I 

think we in fact, analyzed it further. If it is completely reducible, then it is D2, if it has exactly 1 

root it is D4 or C4. So, we can rule this out, because g is not completely reducible in Q, but 

which 1 will occur here? So, now, here is where we look at the degree.  

What is the degree of K colon Q? K is of course, a splitting field. So, K is nothing but i and 

fourth root of 2. So, this will have degree 8, it is 8. Now, only D4 has order 8, C 4 has order 4, so 

this cannot happen. So, looking at the specific polynomial we will conclude that it is D4. So, let 

me just give you some more simple. So, I hope this is clear. So, here it is D4 and this is in fact 

something that is not new for us we have considered this.  
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So, if you do X 4 plus 1 here the roots are plus minus 1 plus minus i. So, you can actually by 

hand compute the resolvent cubic, G will always denote resolvent cubic for me in this case 

situation, resolvent cubic is actually nothing but X cube minus 4 X, so this is an exercise. So, you 

take all of the beta i and we compute this. So, this completely reduces, completely splits in Q, 

because its roots are 0 and 2 and minus 2. So, it will, it has 3 roots there. So, the Galois group is 

D2 here, but of course, we know that already, because the splitting field is Ki, so this is just 

revisiting a well known example with something that we already know.  

So, now the third example I want to do, so maybe I will just, I do not want to use A, B, C 

because I will use them later. So, this one is X power 4 minus 4X square plus 2. So, I want to do 

this also explicitly without using any formulas for resolvent cubic. So here, you check that roots 

are plus minus 2 plus minus square root 2. So, here, in fact, what you can do is if you take X 

equal to 2 plus root 2 square root and you compute the irreducible polynomial, you get X square 

equals 2 plus root 2, and then do X square minus 2 equals root 2, so that means square again.  

So that will be X square minus 2 whole square equals 2. So, this is X power 4 minus 4X square 

plus 4 minus 2, so that is plus 2 equal to 0. So, the irreducible polynomial of this is this and this 

is of course, irreducible by Eisenstein. And we know that earlier two polynomials are also 

irreducible, one can check that time in I will leave that for you and this is irreducible and the 

other roots are given by this. 



Of course, you can take minus of this it will give, it will have the same irreducible polynomial, 

but you can put minus here also. So, the splitting field is actually. So, this is an exercise again. 

So, the 4 roots are, negative of this is already there, but all you need to do is to show that square 

root 2 minus root 2 can be expressed as a polynomial of this, so and that I can, I will tell you 

what it is and you can check this.  

So, this is again in K because 1 square root 2 plus root 2 is there. So, square root 2 plus root 2 is 

in K. It means 2 plus root 2 is in K, because you can square this, but 2 is of course in K. So, root 

2 is in K that means root 2 divided by and then you simply check that these are equal this ratio is 

this, this is a triviality. So, here Galois group has order 4, Galois group has order 4 because K 

over Q is degree for you, attach one of the roots, other roots are already there. And that root has 

degree 4. So, and in our list, what are the degree 4 things, it is either D2, which has degree 4, D4, 

D 4 has degree 8, A4 has degree twelve, S4 has order 24. So, it is either D 2 or C4, but which is 

it.  
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So, I claim that you can check this by computing the resolvent cubic and showing that it will 

have exactly 1 root and not all 3 roots in Q, but more directly, one can check that G contains an 

order 4 elements. What separates the client 4 group and the cyclic group of order 4? Client 4 

group has all elements of order two other than the identity, C4 has an element of order 4, so if G 

contains an element of order 4, one can show that, then it will follow that it is C4.  



So, let us consider this particular sigma of square root. So, to determine automorphism of K, all 

you need to say is what is the image of the generator which is square root of 2 plus root 2, I will 

define this to be it can be any of the 4 other, 3 other conjugates, any of the 4 conjugates. So, I 

will take 2 minus root 2 square root. So, then check that sigma square of this is actually sigma of 

this which is square root 2 minus root 2.  

So again, I am going fast about this, and using the fact that square root 2 minus root 2 is root 2 

divided by sigma of square root 2 plus root 2. And then you do a little bit of analysis and show 

that, so this is an exercise. So, as I said, I want to do more as many problems as possible. So, I do 

not want to do every detail, so I want to isolate where I leave the exercise for you. So, this 

equality is an exercise, it is a trivial exercise, same computational exercise.  

So, that means sigma square is not identity. So, this is not square root 2 plus root 2. So, this 

means g cannot be D2, because in D2, every element has square equal to identity, so G is C4. So, 

you have an example with C4, you an example with D2. And you have an example with D4.  
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And for other things, I want to introduce now some more theory, and some general useful facts 

about discriminants and resolvent cubics. And this is the following. So, if you have a quartic 

polynomial of the form X power 4 plus CX plus D, so it has no cubic or quadratic term, then it 

just happens to be 256 d cube, minus 27 C power 4. And the resolvent cubic of the same 

polynomial. So, these are some computational things, which one can find in literature, you can 

take help from some notes, online notes that you will find and compute this.  

And so I do not want to get into that computation. I would rather use just these formulas to give 

you some interesting examples. So, these are facts. So, you can find them in literature, just 

search for this. If you have any questions about where to find them, please feel free to contact me 

or ask in discussion forums. So, now using this, I want to consider this polynomial as a rational 

polynomial. And again, I want to quickly move on to the next problem. So, I will let you check 

this f is irreducible. Check by going modulo 2, so go modulo 2 and show that that column is 

reducible, it is not enough to show that it has no roots. Because it is degree 4.  

First you have to show it has no roots, then it can split potentially as a degree 2 times degree 2, 

you show that that is not the case module 2. So, this is an exercise for you. So, this is an 

irreducible polynomial of this form. So, the discriminant, you can compute using this formula 

here happens to be minus 283. So, this is not a square, because it is a negative number. So, it is 

not a square and g happens to be X cube plus 4X minus 1.  



So, this also you can check is irreducible. I will let you check this by, for example, rational root 

test, here any root must be 1 or minus 1, but neither of those is a root so there are no roots, it is a 

cubic polynomial. So, it is irreducible. So, we have g reducible and D not a square, so it must be 

S4. So, Galois group of f is S4. So this, I have, I am trying to give you examples of every group 

here, D2 is covered, D4, C4 are covered, S4 is covered. Now, let us look at an example with A4.  
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And this also, I will sort of not explain in detail. You take this. I claim, I mean you cannot apply 

Eisenstein and it is not clear. I mean, it is not immediate, it requires some work to do this, first 

show that F has no roots. Using rational root test, show that it has no roots that one can check 

because any root must be an integer that divides 12 and you check for all of those devices of 12, 

none of them is a root. So, it has no rational roots, but that does not immediately imply unlike in 

the degree 2 or 3 case that is irreducible, because there is a chance that it can split as an 

irreducible quadratic times another irreducible quadratic. 

Now, show that f mod 5 is a linear polynomial times a cubic irreducible polynomial. So, a linear 

polymer times a cubic irreducible polynomial and you show that if f has, if f has gh, g and h are 

degree 2 irreducible, then if you have, this implies that f has 2 roots modulo 5, but this violates 

this. So, f has exactly 1 root modulo 5. So, you can show this, all this using these exercises. So, 

this is not easy.  



So, this is an exercise, but one can do this, this is a good exercise to get experience with 

computing irreducible, verifying irreducibility of polynomials but I do not want to get into that. 

So, this is irreducible and just applying blindly this formula, you conclude that discriminant is 

actually 3 square 2 power 6 square. So, D is a square. So, just blindly apply this and you get the 

formula is here, you apply the formula for discriminate, you get this. 

And g happens to be X cube minus 48X minus 64. And you can check that this is irreducible by 

going modulo for example 5. So, you can either do rational root test or directly check modulo 5 

and you look at it and you show that it has no roots, so it is irreducible modulo 5. So, this is mod 

irreducible in Q itself. So, we are in this situation where discriminant is a square but g irreducible 

and hence, Galois group of f is A4. So, you have all possibilities now, that we have covered. So, 

you have A4, S4, D2, D4, C4, so, all the 5 examples are covered now.  

So now, let me just do one more simple thing to just illustrate what happens if you have a higher 

degree. So, let us see, so I want to find where I wrote this. So, degree 5 we have considered 

earlier. And so last thing I will do 5 4, quartics is 3, so 4. 
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So, I give you a column of degree 6 like this. So, X power 6 minus 2X 5 minus X 4, I hope I 

have done this calculation correctly. So, what you will see this is a trick question. So, what is the 

Galois group of this? Of course, it looks very strange and you have no way of doing this for 

degree 6. But it I cooked it up exactly so that you have X cube minus 2 times X minus 1 times X 



plus 1 times X minus 2. So, 1, minus 1, 2 are all roots of this. So, now these are all going to be 

linear in Q and this is irreducible.  

So, Galois group of f is actually nothing but S3 because X cube minus 2 has S3 as the Galois 

group. I just wanted to do this to illustrate that just because you have large degree does not mean 

that Galois group will be I mean, it is also a big group, it could, depending on the factorization of 

the polynomial, you can fall back into smaller essence. So, now let me do one more problem. So, 

before I stop this video, so I lost track. So, the second problem was computing Galois groups.  

(Refer Slide Time: 30:04)  

 

So, third problem still with quartics. So, let us say f is an irreducible quartic degree 4 in other 

words, which has exactly 2 roots, real roots. So, then I claim that, show that the Galois group of f 

is either S4 or D4, it cannot be others in the list that we have. So, why is this? So, let us prove 

this.  

So, the, let us say K is a splitting field of f, then what we have is and so let us say alpha is real 

root of f. So, then we have Q alpha and Q. So, this is of course, 4 because f is irreducible. So, 

this is 4 and Q alpha is not equal to K, because K is not contained in R, because it has exactly 2 

real roots means the other 2 roots are complex and not real. So, K must not be contained in R, 

but Q alpha is contained in R. So this cannot be 1, so it is at least 2. 

That means K colon Q is at least 8. That means the Galois group order is at least 8. So, now, in 

our list there are not too many, with order, at least 8 because other things are D2 and C4, they are 



order 2 and order 4. So, these are the only possibilities. Now, which of them, can it happen? So, 

the question is asking, it is either S4 or D4, so we have to rule out A4? How do we rule out A4? 

We rule out A 4 by, remember A 4 happens when discriminant is a square. This happens when 

discriminant is not a square.  
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So, now I claim that discriminant of f is negative, then it cannot be square. And this is an easy 

statement. So, let us say the roots are alpha 1, alpha 2, Z and Z bar are roots of f with alpha 1, 

alpha 2 in R, and Z naught in R. So, then what is the discriminant, I will just go and directly 

compute the discriminant. I have an arbitrary quartic. So, I cannot use the formula that I wrote 

earlier. So, this is simply remember, discriminant is alpha i minus alpha j whole square for all i 

less than j. So, this is alpha 1 minus alpha 2 square. So, I am just going to write all of them.  

Alpha 1 minus a is i. So, Z is a plus ib let us say. So Z bar is a minus ib. So, of course b is 

nonzero. Because that is not in R, so Z minus a minus ib alpha 1 minus that alpha 1 minus Z bar 

will be minus a plus ib. And then I will write Z alpha 2 minus a minus ib, alpha 2 minus a plus 

ib. You see where this is going? And finally, is Z minus Z bar. What is that minus that bar? a 

plus ib minus a plus ib. So, this is 2 ib, so 2 ib whole square.  

So, now let us look at individually what the sin of these things are. So, this is of course positive, 

they are all distinct roots. So, this is positive, and this is negative. That is because that is b, is 

positive b is nonzero. So, this is minus 4b square. So, that is negative and together, this is alpha 1 



minus a whole square plus b square. So, this is positive, this is positive. So, the discriminant is 

negative.  

And hence the Galois group cannot be, so that means discriminant is not a square. So, this 

implies Galois group cannot be contained in the alternating group. So, this is ruled out. So, this 

implies and for order reasons, D2 and D2 of course is ruled out because discriminant is not a 

square but C4 is ruled out for order reasons and as required it S4 or D4. In fact, both of these 

occur. 
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And I will leave this as an exercise for you, I do not intend to do this, but a similar calculation 

will tell you that if f is a irreducible quartic, so exactly as before, so, I do not want to call it a new 

name. So, irreducible quartic, so this is exercise, f has 0 real roots. So, of course, it has 4 roots, if 

all of them are non real, then discriminant of f is positive, if f has 4 real roots also the 

discriminant is positive, and if f has exactly 2 real roots, exactly of course everywhere, then 

discriminant this we have done. So, this is the above problem.  

So, in general, the discriminant will tell you what happens with respect to the discriminant of it, 

sorry, the number of non, number of non complex, non real roots will tell you the sign of the 

discriminate. Discriminate is of course are rational number. So, whether it is positive or not, and 

it is a nonzero number, because you are irreducible polynomials so distinct roots, so discriminant 



is certainly nonzero. So, let me do 1 or 2 more problems before I end this class. So, just to settle 

these are problems that I touched upon in the videos, the earlier parts of the class.  
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So, let f be as always I will stick to the complex subfields of complex numbers, let f be a 

polynomial of degree n. Then the problem is asking you to show f is irreducible, if and only if 

Galois group of f is a transitive subgroup of Sn. We certainly know that Galois group is a 

subgroup of sn, but it is a transitive subgroup if and only if f is irreducible. 

So, this I needed this statement in the proofs of solvability of radix polynomials, but I wanted to 

record this explicitly, so that you have this in your notes. So, I do not want to spend too much 

time proving this because we have essentially proved this. If f, if alpha and beta are two roots of 

f, K of course is a splitting field, then f irreducible implies there is a function from f alpha to f 

beta, f automorphism, f isomorphism sending alpha to beta. 

Extend this to get sigma from K to K, sigma in Galois group of K f, which is of course, the 

Galois group of f sending alpha to beta. So, G is transitive. So, for any two roots, there is a 

Galois group element which sends one to the other, so it is transitive.  
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Suppose, f is not irreducible or in other words f is reducible, then f can be written as g times h 

where degree g is positive and degree h is positive. But now, any element sigma of G must 

permute roots of g and permute roots of f, roots of h separately. What I mean is any root of g has 

irreducible polynomial which is a divisor of g. So, and that cannot be a root of h, we can assume 

that g and h are co prime. So, what I want to say is that there must be a root of g that is not a root 

of h, there must be a root of h that is not a root of g. So, no element of, no element sigma of G 

can map a root of. 

So, there is a little bit more work involved here, so I will simply say that, so using this 

decomposition, this is a true statement, using this factorization, conclude that G is not transitive. 

So, there is a root that you cannot permute. So, the point is it must be a transitive subgroup of Sn, 

n is important, where n is the degree, it cannot be transitive, it can be a subgroup of, transitive 

subgroup of smaller symmetric group Sn minus 1 and f can fail to be irreducible. But if it is a 

transitive subgroup of Sn, there must be a root of h that cannot be map to a root of g. So, this last 

part is the exercise. Again, I am not doing everything possible, so that I am covering as many 

exercise as possible. So, let us do just one more problem before we end this class. 
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This is also we have done before. Now, let us take f to be an irreducible polynomial, as always 

capital F is a subfield of C. Then, if a root of, if one root of f is solvable, then all roots of f is 

solvable, then f itself is solvable, solvable over f of course, then f is solvable that means all roots 

of f are solvable. And the proof is fairly clear.  

So, suppose alpha in C is a solvable root of f. So, you have a tower starting with F and ending 

with a field, this is simply radical, simply radical, simply radical and alpha is here. But now 

using a theorem that we proved about extending the radical extension to a Galois extension, 

given a radical extension you can enlarge the field to get a Galois extension which is radical. So, 

you can extend to some K or L, such that this is radical plus Galois.  

But now, L over F is Galois implies L over F is normal and f is irreducible and has a root, so 

alpha is of course in Fr, so alpha is in L, has a root alpha in L, so f splits in, splits completely in 

L. So, that means all roots of f are solvable. Because all roots of L is in a radical extension. So, 

every root is solvable, hence f itself is solvable.  

So, let me end this class now, we have done several problems on computing Galois groups and 

some observations that we have made during lectures I wanted to formally record them here. So, 

let me stop now, I will continue with more problems in the next class. Thank you. 


