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Welcome back, last time we proved this theorem, which says that if you have a quintic 

polynomial over a subfield of complex numbers; whose Galois group is either S5 or A5, then it is 

not solvable. So, it it gives us a way to construct a non-solvable quintic polynomial. We need to 

now go ahead and construct a polynomial whose Galois group is S5 or A5. So, this previous 

class completed the course really; we have covered everything that we wanted to do. Remember 

in the beginning I said goal is to prove Galois theorem about solvability of polynomials with 

rational coefficients. We have done that, so I have some loose ends to take care off and also give 

some exercises. 
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So, the remaining few videos in the course will be exercises, and in this exercise session we will; 

we will prove some results that we have used earlier in the course without proof. And I also will 

give you several examples on how to compute Galois groups, and solve some interesting 

problems on Galois groups. So, am going to go ahead and start this and one by one will do; and 

will see how much we can do. In the first problem we will take care of the pending issue, which 

is construction of a polynomial with rational coefficient, whose Galois group is S5. So, we are 

going to do a slightly more general problem as follows. 

So, let P be a prime number, and let us assumes P is at least 5. Suppose f is an irreducible 

polynomial of degree 5, of degree P, such that f has exactly 2 non-real roots. So, it has P roots of 

course because it is irreducible polynomial of degree P; it will have distinct roots and complex 

numbers. I am assuming that it has exactly 2 non-real roots; other P minus 2 are inside r. Then, 

Galois group of f is Sp, so Galois group of over Q of course. Every time you take a polynomial 

in a particular field, the Galois group when I refer to the Galois group and that polynomial; I 

mean the Galois group over that field. 

So, remember if you take P equal to 5 gives us a non-solvable quintic. So, we have to construct a 

polynomial, which exactly has 2 real roots will do that; so let us prove this. This proof is quiet 

simple and it is instructive; so let us call the roots alpha 1, alpha 2, alpha 3, alpha P be roots of 

we can take K, f in a splitting field K of f over Q; the usual sentence. So, we we have this 



splitting field of that polynomial; it will have P roots. Take, call then alpha1 through alpha P, and 

let say alpha 1, alpha 2 are not in C are not in R; so alpha 3 and up to alpha P are all in R. 

We know that exactly 2 are not real numbers; so we have this. First I claim that so let G be the 

Galois group of the splitting field, which of course what we call the Galois group of the 

polynomial. First I claim that the permutation 12 the 2-cycle 12 is in G; why is this? Consider the 

map from K to K given by complex conjugation. So, here any a plus ib will go to a minus ib. 
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So, some in general facts which one can show facts sigma is an automorphism of K, and which 

fixes Q; any automorphism of an extension of Q fixes Q. So, it is an element of the Galois group 

and also sigma of alpha 1 is alpha 2, sigma of alpha 2 is alpha 1; and sigma of alpha i equals to 

alpha i, for all i from 3 to P. Here, theses are some general facts; because we know that roots of a 

rational polynomial, complex roots of a rational polynomial appearing conjugate pairs, non-real 

complex roots. So, alpha 1 and alpha 2 are basically conjugates of each other. Everything is a 

conjugate I mean if alpha 3 is also conjugate of itself. 

But, that is because conjugates of alpha3 is in alpha3 itself, because they are real numbers. But, 

otherwise the non-real ones are appearing in conjugate pairs; so this is an easy exercise. I am 

going to in order to do as well any problems as I can; I am going to skip some facts which are 

either group theoretic; or some general facts that come from earlier parts of algebra. So, that I 



can focus on the Galois Theory part; so this is one such. So, we assume we assume these facts; 

so sigma is in fact.  

So, sigma is in fact permutation 12, because it sends 1 to 2, 2 to 1; and it fixes all other, so 1 2 

belongs to G. So, sigma is in G, so this is empty. G contains 2-cycles, so G contains 2-cycles 

transposition of 2-cycle. Now, I am going to argue that it also contains P-cycle; so we have 

because f is irreducible. The action on the G of the roots is transitive; so there is an order of orbit 

of order P size P. 
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So, P divides it or more directly we have K contained in Q of alpha1 contained in Q; and this is a 

degree extension because f is irreducible. That is because the irreducible polynomial of alpha1 is 

f; so this is a degree P extension. Hence, P divides K colon Q, which is of course the order of G. 

But, by Cauchy’s theorem, G contains an element of order P; this so far we have not used the 

fact that P is prime, but now we are going to use. So, P prime implies G contains a P-cycle. This 

is only true for prime P; in general if you have an order 4 element; it does not mean it is a 4-

cycle. However, for P prime it must mean. 

This requires some group theoretic facts. So, I will just, order of a product of disjoint cycles is 

equal to LCM of order of each of those individual. So, now in order for a element to have a order 

P; that element can be written as a product of disjoint cycles. And those orders will have LCM P; 

but they are all because P is prime. This implies this and as I said I am going to leave certain 



group-theoretic statements as exercises for you. So, any element of order prime must be a P-

cycle; it cannot be written as a product of cycles of different sizes. In general you can do that, but 

not if P is prime. So, G contains a P-cycle and G contains a 2-cycle. 
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So, now again a general fact, which I will in fact prove because this is an important fact. So, if G 

is in Sn and contains, here n is any number; a 2-cycle and an n-cycle, then G is Sn. So, any 

subgroup that contains a 2-cycle and an n-cycle is all of Sn. So, the fact is proof of this, we can 

assume 12 is in G; let us call that sigma. Of course, the way that is just a matter of rearranging 

the indices; but we can also assume that this is the n-cycle. Because you take n-cycle and you 

take some sufficiently powers of them one by one; eventually you will get this, because n-cycle 

is P cycles group and they are all powers of each other. 

So, any n-cycle you have you can take some power, and you can get this particular n-cycle; let us 

called this tau. So, then it is an easy computation tau sigma tau inverse is actually 23; this is 

because you can work this out, I mean this is a trivial exercise. So, write down tau inverse, then 

apply sigma, then apply tau; you get this. So, now that means this is in G, because tau and sigma 

are in G. Any product of things in G is in G; so that is in G. But, if you do tau times 23 times tau 

inverse; that is actually 34 that is in G; so is also an exercise. So, I am not doing the explicit 

computation here, because that is easy and you can do this. 



So, similarly we can conclude conclude that i i plus 1 is in G for all i; so we have 12 by 

hypothesis, 23 I have exhibited 34. And then you do tau 34 tau inverse, you get 45 and so on. 

But, once you have these you can now compute 1, i is actually equal to 1, i minus 1, i minus 1, i, 

1 i minus 1. So, this is in G by induction; this is in G by this construction; this is in G by 

induction, so this whole thing is in G. So, that means, I am going over this very fast, but 1 

comma i is in G, for all i.  

Now, it is well known that they generate Sn in particular because you know that 1 comma i times 

1 comma j, times 1 comma i is actually i comma j. So, 1 goes to i, I goes to 1; so 1 goes to 1 goes 

to i, I goes to 1, so 1 is fixed; i goes to j, j goes to 1, 1 goes to i; so j goes to i and similarly i goes 

to j. So, that means all this very quickly what I said is G contains all 2-cycles. But then it is well 

known that every permutation in Sn is a product of 2-cycles.  

So, this is a standard group theory fact, but I sort of try to give you a quick proof of this. So, I 

hope I did not confused you, you can just note down all the equalities I wrote here; and check 

them one by one, it is a trivial check. So, a group contains Sn subgroup of Sn contains a 2-cycle 

and n-cycle; it is Sn. So, now our Galois group here contains 12 and a P-cycle.  
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So, applying this to our situation this is as required; so the problem ask you to show that if you 

an irreducible polynomial of degree P, which has exactly 2 non-real roots; the conceptual part of 

it is very simple. The complex conjugate permits the non-real roots fixes all the real roots; so that 



is a 2-cycle. And because you have an irreducible polynomial, you have a order P element; 

because P is prime, it must be a P-cycle. And a general fact about symmetric groups is that any 

2-cycle comma any P-cycle together will generate all of Sn, so G is Sp. This now settles the 

question of polynomials having its Galois group is Sp. Now, we have 2 still construct a 

polynomial with exactly 2 now real roots. 
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Examples of polynomials of irreducible polynomials with exactly 2 real roots. So, I am want to 

give you a couple of them to completely settle the issue. So, what we do here is, so this is let me 

just go and quickly tell you this. So, the point is we need for degree 5 first; because the 



ultimately the whole point of the course is produce a quintic which is not solvable. So, what I 

wanted is exactly 3 real roots; so let us take the polynomial X power 5 minus 4X, let us take this 

polynomial. This is not reducible, but what kind of polynomial is this we have X times X power 

4 minus 4. 

So, this is actually let me take here, so this is X times X power X square minus 2, X square plus 

2. So, this degree 5 polynomial has exactly 3 real roots. So, then g has exactly 3 real roots, 

exactly 3 real roots, and 2 non-real roots. So, the 3 real roots are 0 square root of 2, minus square 

root of 2 and. So, the non-real roots are root 2i minus root 2i; so these are not in R, these are in 

R. Now, this is a good polynomial for us, except that it is not irreducible. So, if you look at its 

graph, it looks something like this. So, the it goes through 0, so this is 0, this is square root 2, this 

is minus square root 2, this is the graph of Gg. 

But now what I do is shift this up by let say 2. So, let us f x equals gx plus 2; so this is x power 5 

minus 4X plus 2, and this is irreducible by Eisenstein style. So, I have chosen 2 so that you get 

an irreducible polynomial. What is the graph of this? I claimed that its graph is shifting this up 

by 2. So, graph of, so this is the graph of; so you can also use some calculus to intermediate 

value theorem and mean value theorem, to give a concrete proof, but it does not matter. So, it is 

clear that when you shift this; it will continue to have 2 real roots 3 real roots. 

So, we conclude f has exactly 3 real, 2 non-real roots. So, this is a function polynomial 

irreducible; it has 3 real roots and 2 non-real roots. So, one has to do a little bit more work, check 

this carefully; so I will leave that part to you. Because that is just you compute; for example that 

it it will be negative here, positive here. So, it will at least cross x axis 3 times; it cannot cross 

more than 3 times, because g does not. So, hence Galois group of f is S5 and f is not solvable; so 

this is good. So this means that you have a polynomial of degree 5 which cannot be solve by 

radicals; so this is the main result of Galois theory in some sense.  

So, Galois gave an explicit construction of polynomials, which cannot be solved by radicals. So, 

I will give you one more example which is along the same lines; but I thought it would be good 

to have 1 more example. So, this is irreducible by Eisenstein and this can be written as x times X 

power 4 minus 4 minus 16 plus 2. So, this is X times X square minus 4, X square plus 4 plus 2; 



so, this has exactly 3 real 0 to minus 2 non-real roots and hence so does f. So, again it is 

irreducible it has 3 exactly 3 real roots Galois f is S5; so this proves that this is also not solvable. 
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You can construct now any for any n; let f x be X power n minus 5, times X power 5 minus 16x 

plus 2. So, then Galois group of f, of course f is not irreducible; but however we know that 

Galois group of f is S5. Because this already has roots, so splitting field of f is the splitting field 

of this, which is S5; so, this implies f is not solvable. Every time you have the Galois group S5 or 

A5, it is not solvable. So, hence for every n we have a polynomial of degree n which is not 



solvable. We we do not have irreducible polynomial that requires a significantly more work. But, 

for prime numbers we can construct that. 

So, let P greater than equal to 5 be a prime number. Let f be X power let say X square plus 4 

times X minus 2, X minus 4, x minus 2 times P minus 2 plus 2; so this is in Q x. Degree of f is P 

because this these are P minus 2 terms here, there is a square term here; so degree is P. So, I 

claim that f is irreducible, so the proof simply uses Eisenstein criteria. Because if you now 

expand out f can be written as X power P plus these; these are all even numbers 4, 2, 4 2 times P 

minus 2. So, every term that you have in the middle of this polynomial, all intermediate terms 

like this or even. 

So, you can factor out it too, because for example what is X power P minus 1 term? So you have 

to take degree 2 and all but one of these. So, you have to take P of P minus 3 of this; so and the 

last one you have to take the coefficient. So, that is even so that will be even times X power P 

minus 1. So, and then what is the constant term? Constant term is 4 times; so you will have 

actually here. So, 1 2 up to P minus 2 terms; so you have to take these minus 2 minus 4, minus 2 

times P minus 2. P is odd, so P minus 2 is odd. So, there will be a minus sign here; and then you 

will have. So, I will write the constant term minus 4 times 2 times 4 times 2 times P minus 2 plus 

2. 

But, this is divisible by 4 obviously; so the constant term is even but not divisible by 2, by 4. 

Because 4 divides this term and 4 does not divide this. So, constant term is even but not divisible 

by 2; so you can apply Einstein time to conclude that f is irreducible, so far so good. And now I 

claim that f has exactly P minus 2 real roots; and this is the reasoning is same as above. What is 

the reasoning? Reasoning is you look at g which is X power P; so f is g plus 2. So, I am taking 

this to be g; so I am taking this to be g, then g has roots plus or minus square roots of minus 4, 

and 2, 4 up to 2 times P minus 2. So, this is not real, these are real. 

So, and then you shift up by 2; so that means f will also have exactly 2 non-real roots, and P 

minus 2 real roots. So, f has exactly f is irreducible has exactly P minus 2 real roots and hence. 

So, in particular so I want to highlight this because we will get back to this later. In particular, we 

construct a Galois extension K over Q, such that Galois K over Q is isomorphic to Sp, for any 

prime; for any prime P at least 5. So, I want to comeback to this statement later, because the 



question is given any group can you construct such a Galois extension. That is an open problem, 

very famous open problem. 

But, so what we have really done here is that we can do Sp. This example will not give you Sn, 

because this is not irreducible polynomial; it will only gives us S5. So, this settles the question of 

exhibiting polynomials, which are now solvable by radicals. Now, what I want to do is do some 

examples of computing Galois groups. So, this might be a good time to stop; so let me stop this 

class here. In next class we will continue with the more exercises. Thank you. 


