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Welcome back we are, we have proved that there if a degree 5 polynomial has Galois group S5 

or A5; then it is not solvable. We we are yet to produce examples of such polynomials, but 

before we do that I want to reprove this statement. 
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Because as promised I want to give you two different proofs of that statement; so, let me prove 

the following. So, this is a result that we already know, but it is a different proof; so let us take a 

degree 5 polynomial. So, suppose the Galois group of f is S5 or A5, then f is not solvable. 

Remember, we did prove this because the Galois group f is solvable, if and only if Galois group 

is solvable. And the Galois group is by hypothesis either S5 or A5; so it is not solvable by group 

theoretic arguments. So, f itself is not solvable. 

But, here I do not want to introduce solvable groups; this is a self contained proof that will work; 

only using that A5 is simple. So, that only thing we need; so let us start the proof. So, suppose G 

is S5, so let G be the Galois group, first suppose G is S5. So, I do not argue that I can assume G 

is A5 and then that will also solve the case for S5. So, then let K be the splitting field of F over K 



over F; so, the G is the Galois group of K over F by definition. So, you have K and you have F to 

begin with so this is S5; the Galois group is S5. But, now first add let D be the discriminant of f, 

and delta is the square root of the discriminator. 

Since, Galois of f is not contained in A5, we know that delta is not in K; delta is not in F. This is 

something we have shown; discriminant is square if and only if the Galois group is contained in 

the alternating group. So, this is in fact a degree 2 extension; it is either degree 2 extension or 

degree 1 extension. But, if it is degree 1 extension, delta will be in F; so that is not possible. So, 

this is degree 2 and Galois of course and this is the Galois group A5; that is the only group if you 

think about this of order 2, order index 2. 

So, this must be; so this implies the Galois group only group of index 2 is S5 is A5. So, this must 

be a group of index 2; because this is 2 so that is A5. So, Galois group of f over f delta is A5. So, 

suppose that we have shown that Galois group if the Galois group is A5, then the polynomial is 

not solvable; then f is not solvable over F delta. So, so this implies f is not solvable; because if it 

if the roots cannot be expressed as radicals with coefficients in F delta, they cannot be expressed 

as using radicals in F. So, if it is not solvable over a bigger field; it is not solvable over a smaller 

field. 

So, this is what I will show; this this will follow. So, if we prove the A5 case, that means forget 

S5 for the moment. So, if we showed that if Galois group is A5, then F is not solvable. Then, 

applying the theorem Galois group of small f over F delta is A5; so it is not solvable over F5. It 

will follow in turn that it is not solvable over f. 
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So, it suffices it to consider the case Galois f is A5; because if I proved that case this implication 

will follow. So, now we are in business, so we assume; so let G is a Galois group of f which is 

A5. So, suppose so now I am done with this discriminant business; so now I have my situation is 

K over F. This is A5 and it is supposed to be not solvable; so, K is a splitting field of small f over 

capital F. So, if so our goal f is not solvable over capital F.  

Suppose now or suppose it is: Suppose it is solvable over capital F; that means let alpha be a root 

of small f in capital K. So, alpha is, so this is going to be our assumption and we hoped to get a 



contradiction. Suppose its roots are solvable, so I will take one root; alpha is solvable over 

solvable over F. 
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So, there exist a tower of extensions which are cyclic of prime degree like this. So, what I want 

to do is F which is F0 contained in F1 contained in Fr; and alpha is in Fr, and each is cyclic of 

prime degree. And Fi column Fi minus 1, so need to say Fi over Fi minus 1 is Galois; and the 

index of this or the degree of this extension is prime. So, now radical is equivalent to being 

radical is equivalent to existence of such a tower with abelian extensions, or cyclic extensions; or 



refining further cyclic of prime degree. So, I added this additional condition to you to the 

theorem that we did; so I will just show it to you. 

Remember we originally want to 3, but then later I added third a fourth condition; because it is 

going to come up later, and it comes up now. So, there exists a tower like this, where each 

extensions is cyclic of prime order; so it is Galois and its Galois group is a prime number, is a 

cyclic group of prime order. And it is a triviality to go from 3 to 4, because also you have a 

cyclic extension; you can take a subgroup which is of prime index; go modulo that and so on. 

And so, 3 to 4 is a triviality; so I just added that after we prove this theorem. And we are going to 

just now use 4 directory; so we have such a situation. So, now what I will do is the following.   
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Now, I have a small claim, which is actually the main ingredient in the proof; so, let me prove 

that as a lemma. Let F prime over F be again a Galois extension, such that the degree of this 

extension is prime number, is a prime number. Let K prime be the splitting field of small f over 

capital F, F prime; K prime is a splitting field of small f over F prime. Then, I claim Galois group 

of K prime over F prime is also isomorphic to A5; so that is the lemma. And this lemma is all 

that we required; so the main ingredient is that lemma. So, let us carefully prove this. So, the 

picture is the following. 

So, you have I will draw this picture a few times; so you have F to F prime, so F to F prime. And 

we have also K, remember K is the splitting field of small f over capital F. And we have K 



prime, which is a splitting field of f over capital F prime; so, now let us just see what these are. 

So, first of all K is equal to F adjoint alpha1 alpha2, alpha3, alpha4, alpha5; so as a small 

exercise, I did not say that f is an irreducible polynomial in theorem. But, if Galois group of f is 

A5 or S5, then f is irreducible; this is an exercise for you. Because if it is not irreducible, then it 

factors ad gh, where degree of g and degree of h are less than or equal to 4. 

So, the Galois group cannot be S5 or A5. So, because K will be, so basically what we know is 

that Galois group of K over F is the order of that is divisible by 5. Because it is either 60 or 120; 

in either case 5 divides this. But its f is reducible, then 5 cannot divide; so I will leave that as an 

exercise, maybe I will do this in the exercise session later on. So, f is irreducible in order for to 

have the right Galois group A5 or S5. Because if its degree 4, so it is a product of small degree 

polynomials; it can be when you attach roots of g, you will have L. This degree is less than equal 

to 24; and then you will have another. 

So, this is the splitting field of g which is degree 4, and then you will have splitting field of h. So, 

that is also less than equal to 24; in fact if its degree, I mean it will be much less than that. But, I 

do not care, but the total can be 5 cannot be divide the total product. So, anyway this is triviality, 

but I wanted to record that; and I wanted to state a stronger theorem. So, stronger looking 

theorem, so I do not want to assume f is irreducible. So, let me record bit here, f must be 

irreducible with this hypothesis. 
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So, the conclusion that f must be irreducible says that alpha1, alpha2 are 5 distinct elements. So, 

that is something that I note, and what is F prime; so this is what we have. F Galois group, let say 

this is P, so prime say P; some prime number P is isomorphic to z mod P z. So, it is the splitting 

field of some polynomial and we know that has no proper intermediate fields. It has no proper 

intermediate fields because it is a prime number. If you have an intermediate field here that must 

be either equal to F or F prime; because P cannot be factored as product of two smaller numbers. 

This we also know that F prime is the splitting field of a polynomial.  
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We claimed that g must be reducible. And the reason is similar to above. So, it is the splitting 

field of a polynomial, because F prime is Galois; any Galois extension is splitting field of a 

polynomial. In this case separable is automatically there, so I just not mentioned that. Because if 

g is some h times h prime with both h and h prime being positive degree polynomials. Then, we 

have F prime which is F adjoint roots of g, and you can have intermediate field here; F adjoint 

roots of h and F.  

So, this if this is a proper decomposition, I can also assume that; because if they are not degree 1 

if any other miss degree 1, I can drop it and take that as g. If g is h times x minus a, then a is in F; 

so f prime will be splitting field of h. F prime is a priory splitting field of g, but I do not get 

anything extra by attaching another linear factor. So, I can remove all the linear factors that g 



may contain. Then if it is not irreducible, it will factored as the reducible polynomials of degree 

greater than 1, so at least 2.  

So, this is not an equality and this is not an equality; because h prime cannot be contain roots of 

h prime cannot be here. Because they are co-prime that means they have no common roots; h and 

h prime are co-prime. Because they are too reducible, they can further factor; but I assume that 

GCD is 1. So, I understand that this is all a bit of work; I mean this is not such a triviality as I am 

trying to suggest. But, this is an exercise, so take this as an exercise and show that g is a 

irreducible polynomial. So, because you can conclude that these two must be unequal. So, now 

what we have is g is an irreducible polynomial. 
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So, g is irreducible of degree P. Of course, it has to be P because you take any root, its 

irreducible polynomial is g; and the degree of extension is P. So, this tells me that F prime is F 

adjoint some beta 1 through beta P. So, it has roots, so it is splits completely in F prime; so the 

roots are beta 1 through beta P. So, now I am going to rewrite our picture. So, K is equal to F 

alpha 1 through alpha 5 and F prime is F beta 1 through beta P.  

Now, let us take K to be let K prime to be F adjoint all of them; so K prime is the composite. So, 

I use the composite of F prime and K obviously that is a smallest field, let say in F bar. I need to 

talk composites are really make them meaningful only in a bigger field. I can take it to be in Fr. 



Because that is any field that contained both K and F prime, must contain alpha 1 through alpha 

5, beta 1 through beta P; and this is the smallest such field.  

And now note that K prime have used earlier and they it is not accident that; so I should not 

really talk about a new K prime new K prime is not being defined for the first time. But, I will 

simply wrote that alpha 1 through alpha 5, beta 1 through beta P is indeed the splitting field of f 

over F prime. Because this field K prime is generated over F prime by the roots; so, K prime is F 

prime adjoint alpha 1 through alpha 5. So, F splits completely in K prime and it is generated over 

the roots over F prime by the roots; so that is the splitting field of small f over F prime. So, now 

this is our picture.  
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So, K prime F sorry K prime K, F, F prime. And this I am going to write now instead of the 

degree I am going to write the Galois groups here. Let us call this Galois group G, let us call this 

Galois group G prime, let us call this H, and let us call this H prime. And what is our claim? Our 

claim is that Galois group of K prime over F prime is K5; so, claim H is isomorphic to A5, so 

this is what we want to prove. And I am just introducing the new H prime here that is a Galois 

group of this. So, everything here is every extension here is Galois, because K is Galois; because 

that is a splitting field. 

F is Galois over F prime, F prime is Galois over F prime by hypothesis; and K prime is the 

splitting field of actually fg over capital F. Because the roots of fg are alpha 1 through alpha 5 

and beta 1 through beta P are more directly this is Galois; and this is Galois, so the composite is 

Galois I am saying. So, now let N be the Galois group of K prime over F; let N be the Galois 

group of K prime over F. So, now I am going to do some serious group theory; so what do I do?  

And we have so then let us list down all the statements. So, H and H prime are normal 

subgroups; because these extensions are Galois. And G or N mod H is isomorphic to G prime, 

and N mod H prime is isomorphic to G; this is from main theorem of Galois Theory so far so 

good, so there is nothing serious yet. This is N modulo H is G prime; this N modulo H prime is 

G. 
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So, now consider the first we claim that H intersection H prime is identity; so the proof is simple 

here. Suppose sigma is in H, what does this mean? Sigma is in H means what is h? H is the 

Galois group of K prime over K. So, these are automorphisms, automorphisms of K prime that 

fixed K, which is generated by alpha 1 through alpha 5. So, sigma is in H means sigma fixes 

alpha 1 through alpha 5. Sigma in H prime means H prime is the Galois group of K prime over 

F; so these are automorphisms of K prime that fix everything in F prime. H is the Galois, H 

prime; let me write it H prime here, let me write H here. 

H prime is the Galois group of K prime over K; so automorphisms that consists of 

automorphisms of K prime that fix K, in particular alpha 1 through alpha 5. So, let me say F 

automorphisms of; because F is fixed and then alpha 1 through alpha 5 is fixed. That means that 

is equivalent to saying it fixes K. Here these are F automorphisms of K prime that fix beta1 

through beta P. So, if sigma fixes sigma H is intersection H prime implies sigma is an F 

automorphisms of K prime that fixes all the alpha 1’s alpha i’s and all the beta j’s.  

But, K prime is generated by those; so sigma is identity. So, it fixes F, it fixes alpha 1 through 

alpha 5 and it fixes beta 1 through beta P; so, it better be identity. So, H intersection H prime is 

identity, so that is good. 
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So, now consider the canonical map, I want to call this phi from N to N mod H; which we know 

is isomorphic to G prime. Canonical of this map is H, so restrict to phi, restrict to H prime; 

because H prime is in N, so H prime to N mod H. So, kernel of the restriction is the kernel of the 

original map intersected with H prime. Obviously, when you are restrict, it is all the things that 

go to u identity that are in H prime; but, this is H intersection H prime. So, this means this is 

identity by the claim there. So, this implies phi restricted to H prime is a function from H prime 

to G prime, which is isomorphic to Z mod P Z is injective. 



Remember G prime is Z mod P Z, so N mod H is isomorphic to G prime. So, H prime to that 

there is an injective homomorphism; hence we have 2 cases. H prime is the so H prime is 

isomorphic to a subgroup of Z mod P Z; this implies H prime is either Z mod P Z is the group of 

order P, which is a prime number. So, it has only 2 subgroups; either H is trivial or H is equal to, 

or H prime is trivial or H prime is isomorphic to Z mod P Z. So, there are 2 cases; so this is case 

1, this is case 2. So, H is either H prime is either trivial, so H prime sits inside Z mod P Z; so, 

that means H prime is either trivial or Z mod P Z. 
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So, case 1: H prime is trivial; if H prime is trivial, then let us look at this map. N to N mod H 

prime which is G, which is by hypothesis A5; so, now what can you say about this map? So, this 

map is onto always. This is the canonical map from a group to that group mod normal subgroup. 

So, this is onto, but it is also 1-1; why is this? This is because kernel is H prime which is identity. 

Kernel of this canonical map is H prime which is identity; that is the case that we are taking. So, 

we an onto map and which is injective map; so N is isomorphic to the alternating group A5, so N 

is simple. So, here we have to use the fact that which we have not proved; I have to prove this 

later with that A5 is simple. 
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But, I claim that this is a problem because N does have a simple group, normal subgroup H. H is 

a normal subgroup of N, such that this H; so maybe just I should draw the picture again here. So, 

you have K prime, K, F prime, F and this is N, this is H, this H prime; this is G which is A5, this 

is G prime which is Z mod P Z really an isomorphism. So, N does have a subgroup, normal 

subgroup such that so H is not trivial obviously; because N is N has 60 elements.  

So, kernelity of N is 60 and kernelity of is P; so this implies kernelity of H is 60 by P. But, 60 by 

P is less than 60 and bigger than 1; so kernelity of H is not 1 and not 60. So, H is a proper non-

trivial normal subgroup of N, which is A5. But, this violates the fact that A5 is simple; simple 

means it has no non-trivial proper normal subgroups. But, N does not have a non-trivial proper 

normal subgroups; so, this case cannot occur, so H prime cannot be 1. Correct, so I hope this is 

clear; see H prime is trivial then you violated the simplicity of A5. 
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So, case 2 is H prime is Z mod P Z; that means this Z mod P Z. So, in this case we conclude that 

H must be Z mod P Z. So, now let us just do some simple group theory. So, we know that order 

of N is order of; so because N mod H prime is isomorphic to G and N mod H is isomorphic to G 

prime. So, at the same this is order of H times order of G prime, this is what we have. And now 

this H prime by hypothesis is G is 60 because G is A5; and H prime by this assumption is P, this 

is 60 times P. H is whatever it is and what is G prime? This is H prime; and G prime is Z mod P 

Z so this is P. So, G prime is Z mod P Z; so this is P and this is H, these are equal. 

So, this implies order of H is 60, so you have subgroup of N of order 60; and now we have done 

almost. So, now consider the canonical map N going to N mod H prime which is isomorphic to 

G; so, N mod H prime is isomorphic to G. So, when we have N going to G; I will omit that it is 

surjective, surjective; let me write onto. And now we have a subgroup H here and this goes to 

this. What is the so this is psi and this is psi restricted to H. What is the kernel of psi? So, this is 

psi; I do not need that onto but psi.  

So, what is the kernel of psi restricted to H? This is kernel of psi restricted to H; this is H prime 

intersected H this is 1. So, this is 1 minus 1, so psi restricted to H just like in previous case; there 

we looked at N to N mod H. And restricted to H prime and concluded that it is injective; so it is 

isomorphic to Z image Z mod P Z. Here it is image is G. So, H is isomorphic to subgroup G. But, 



what are the orders of this group? Order of H is 60 by just what we concluded here; which is also 

of course order of G because G is A5. 
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So, you have an injective map from G to H to G, and both have order 60; so, this implies H is 

isomorphic to G as required. So, this is the claim that we made which is the claim that I have 

wrote here. For any Galois extension which is a prime whose degree is a prime number, if the K 

prime is the splitting field; then the Galois group is A5. Now, so this you may have forgotten the 

original situation what is it that we have? We want to prove that F is not solvable. We assumed 

to the contrary that F is solvable and we have this tower; so, let us now copy this tower. So, so if 

alpha is in K is a root of f that is solvable; so for a contradiction we assumed this. So, we have a 

tower like this, so I am going to write it like this. 
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So, you have F, F1, F2, F3, Fr minus 1, Fr; so this is the tower we have. And this is prime Galois 

and the degree is prime, Galois and the degree is prime, Galois and the degree is prime, this is 

Galois and degree is prime, Galois and degree is prime. This is now equivalence of the 4 

characterization of radical extensions. If alpha is radical we can construct such a thing. Now, we 

have K which is the splitting field; so this is the splitting field of f over capital F. And this by 

hypothesis degree Galois is A5. Now, by the claim we have K1 and what is this? This is a 

splitting field of f over F1; so this is this picture here. 



I am applying with F prime equal to F1 and K as it is F as it is; and I have K prime which will be 

now called K1. So, this is a splitting field of the same polynomial over this larger field. But, this 

is A5, this statement is from by the claim; now let see where we are. Now, you forget the original 

situation K over F you forget; so you forget this part. F from is a field small f is a polynomial 

over that field; splitting field has Galois group A5 and we took again Galois extension with F 

prime degree. That is important here, so this is a Galois extension F prime degree. So, we take 

the splitting field, so this is the splitting field of F over F1 or F2 now over F2 now. 

And by by the same claim that is A5; so you can keep going like this. So, you have K3 here and 

this was F3 that would be K3; and you have Kr minus 1 here; that will be A5 also, and this will 

be A5 also. At each stage we have a Galois extension with prime degree, Galois extension with 

prime degree. So, by repeatedly applying the claim, we get A5; and finally we get Kr. So, just to 

make it abundantly clear Kr is the splitting field of f over Fr. And this is A5, because of the 

claim; so the claim is applied to this square.  

Because f is a polynomial over capital F of minus 1 whose Galois group is A5, we took a Galois 

extension of F prime degree, took the splitting field of f over that extension; and what you get is 

F degree A5 extension. But, this is now a problem, why is this a problem? This is a problem 

because so maybe I will write or write it here. Because f splits in Fr, because it has a root; the 

whole tower was constructed, so that the last field in the tower contains a root. So, f splits in that 

field, so f has a root in that field. So, it does not split completely; so all I will says that f is not 

irreducible in Fr X. So, f is not irreducible in Fr X because it has a root.  

So, the Galois group of f, so that means we have f equals x minus alpha times f prime; where f 

prime is in Fr X, and degree f prime is 4. So, the Galois is a splitting field of f over capital Fr 

minus Fr, which is of course Kr is the splitting field of. So, maybe I will rewrite it here.     
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So, Kr which is a splitting field of Fr of f over Fr is actually the splitting field of f prime over Fr. 

Because f’s factors as f times f prime x minus alpha times f prime; alpha is already in Fr. So, in 

order to attach all the roots of small f; you just need to attach the roots of f prime. But, this 

means Galois Kr over Fr is a subgroup of S4; because it is splitting field of a degree 4 

polynomial, so it must be a subgroup of S4. This in particular means its degree its order is less 

than or equal to 24; but, we already established the Galois Kr over Fr is A5. So, has order 60, so 

this is the contradiction we need, we are looking for. 

So, because f already has a root, you do not need a degree 60 extension to get all the other roots; 

in fact, you need at most a degree 24 for extension. So, if this is A5, this is A5, this is A5, this is 

A5, this will be A5; so there is no tower like this. The conclusion is there is no tower like this 

and hence f is not solvable over capital F. If there is a tower like this F, F1, F2, F3, Fr minus 1, 

Fr we are obtaining a contradiction; that is not solvable.  

So, this completes the proof that any degree 5 polynomial whose Galois group is S5 or A5 is 

solvable. So, we sort of take care of this; so we proved that we proved star here in a separate 

way. And the next we will address the question of whether, in fact they do exist such a 

polynomials or not. And next there are lot of such a polynomial will do that, and then we will 

start doing some problems.  



So, this completes the proof that there are if, so I should not say there are quintics that are not 

solvable. But, it completes the proof that if there is a quintic polynomial whose Galois group is 

S5 or A5. It cannot be solvable over that base field; so let me stop this here. In the next class we 

will see such examples of quintics whose Galois group is S5 or A5. And thereby producing 

quintics that are not solvable and then we will go to some problem session. Thank you. 

   

      


