
Introduction to Galois Theory 

Professor Krishna Hanumanthu 

Department of Mathematics 

Chennai Mathematical Institute 

Lecture 42 

Solvable Groups – Part 1 

(Refer Slide Time: 00:35) 

 

Welcome back. We have so far established that if you start with a subfield of complex numbers 

and you take a polynomial over that field of degree 1, 2, 3 or 4, the roots of solvable namely 

enhance the polynomial itself is solvable. So, today what I want to do is introduce another way 

of looking at this and this is through the notion of solvable groups. I am going to quickly give 

you the definition. I would not prove many facts about this, because this is going to be an 

alternate proof of all the things that we are proving directly. So, we have already proved directly 

that any degree 4, 3, 2, 1 polynomials are solvable, but this is another proof. 

So, let G be any group. So, we say that G is solvable. So, you will see that the terminology is the 

same for a very good reason. If there exists a finite series of subgroups, so let us say, starting 

with the trivial group, which I will call G0, G1, G2 and ending with Gr which is G such that two 

things happen. Gi is a normal subgroup of Gi plus 1 for all i from 0 to r minus 1 and Gi mod, 

rather Gi plus 1 mod Gi is abelian for all i from 0 to r minus 1. So, Gr by Gr minus 1 is abelian, 

Gr minus 2 by Gr minus 2 is abelian and so on. G1 by G0 is abelian. So, in particular, G1 itself is 

abelian. 
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So, some easy examples I will write here before proceeding. G is abelian implies G is solvable. 

So, solvable groups are like close to abelian groups. That is the way you should think about 

them. So, there is a series, finite series where quotients are abelian groups. So, they are close to 

abelians. So, obviously, if G is abelian, you do get abelian solvability. You can just take e 

contained in G or 1 contained in G. So, that will do the job. So that is a trivial example, but there 

are also non-abelian groups which are solvable. 

So, I want to write a general statement here. Sn is solvable if and only if n is 1, 2, 3 or 4. So, the 

reason is S1, S2 are abelian implies S1, S2 solvable. S3 is solvable. It is not abelian, but it is 



solvable, but it is solvable because you can consider the series given by, so if you take this series, 

let me use e for the identity element, because indices are already denoted by this. 

So, here quotients, I mean, these are all normal subgroups, the quotient here is z mod 3z and the 

quotient here is z mod 2z. So, this is normal subgroup of index 2 in S3 so quotient is this. So, this 

solvable. So, this is your example of a non-abelian solvable group. S4 is another such example. 

So, here I can take e and I take e, 12, 13, 1, 2, 3, 4. This is our group D2 in the previous class and 

then I take A4, then I take S4. So, the quotients in this case will be z mod 2 cross z mod 2 or D2 

in the notation of earlier class. Here, the quotient is, this is a degree 4 group, order 4 group. This 

is an order 12 group. So, the quotient is the z mod 3z. 

So, the normality is something to check. So, that I will leave for you. So, you take any even 

permutation in S4 and you take conjugate of any element here by that element you will again 

land here. So, that is something to check. I do not want to do that now. And here the quotient is z 

mod 2z. So, this is of course normal because of degree 2, index 2. So, this is quotient is normal, 

quotient is abelian, z mod 2z. So, S3, S4 are solvable. 

Now, in general, the higher essence are not solvable. So, if we use the following facts, so here Sn 

is, suppose Sn is solvable, implies An is solvable. So, I am going to see right here, see below. So, 

I am going to write a proposition at the end after this or really exercise after this, which will tell 

you this. 

So, if Sn is solvable, An is solvable, but An is not abelian so there must be a non-trivial series. 

So, let us say it is e G1, G2, Gr minus 1, Gr which is An. So, we have r is at least 2 because G is 

not abelian. If An is not abelian, r is at least 2, because if r is 1, G1 is always abelian, because G1 

coefficient by G0 is G1. So, r is at least 2. So, hence, An contains a non-trivial, so basically what 

I really mean is that Gr minus 1 is not trivial and of course, Gr minus 1 is not An. 

So, An contains a non-trivial proper normal subgroup mainly Gr minus 1, but this violates this 

important fact, An is simple for n greater than equal to 5. So, this is a standard result in group 

theory. I will not prove it now. If we have time at the end of the course, I will give you some 

results that I have used in the course and I will in that process prove this, try to prove this at least 

or give you an idea, but basically the easiest solution in some sense is, you show that 3 cycles 

generate at least for A5. Maybe I will, so maybe I will just start at this. 



So, you say the 3 cycles generate A5 and we show that any conjugate of a 3 cycle is again in A5. 

So, this will show that A5 is, so I think I sort of confused with this. So, let me not, before I say 

anything in precise. So, I will try to do this in a separate video that An is simple for every n at 

least 5. But here if there is a series which makes An solvable, you will conclude that An has a 

non-trivial proper normal subgroup which is not possible. So, this shows that Sn cannot be 

solvable. So, Sn is, for n at least 5. So, we have S1, S2, S3, S4 are soluble, but S5, S6 so on are 

not true, not solvable. 
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So, proposition that I want to write, and these are simple facts I will use them later. So, if G is 

solvable and H is a subgroup, this implies H is solvable. Second statement is, if G to G prime is a 

surjective group homomorphism so that means, I can put this, group homomorphism and G is 

solvable implies G prime is solvable. So, the image of a soluble group is solvable. And finally, if 

H is a normal subgroup of G, H and G mod H are solvable, implies G is solvable. So, I want to 

leave this as a proof to you, exercise to you. These are not just follow, just apply definitions. 

In the first case, for example, if there is a series for G in the, as in the definition, you intersect 

with H and you take, you show that that works for H. If there is a series for G, you take their 

images and you show that that works for G prime. And for this you have to do a little bit more 

work, but this is a standard group theoretic statement. Nothing serious here. So, these are 

standard statements. So, this first part we have used here. If Sn is solvable, An is a subgroup. So 

An is solvable so that concludes the general introduction by want to give for solvable groups. 
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So, now, the main theorem that I want to prove connecting solvability of groups, so solvability of 

the polynomials is the following. Let F be a subfield of C, as always. Let us take a polynomial 

capital F, in capital F. Then, and let us take the Galois group of f, namely the Galois group of the 

splitting field of f. Then G is solvable if and only if F is solvable. So, this is the theorem of 

Galois. So, this is crowning achievement. So, I should really put Galois here. So, while Abel and 

other people have proved that quintics in general cannot be solved by radicals, Galois was the 

first person who gave a method to check if a given polynomial is solvable or not and his method 

is, this is what one wants to know. 

He created Galois group theory and attached a group to this polynomial and defined the notion of 

solvability of groups and he said that F is soluble if and only if G soluble. So, the proof of this I 

want to give. One direction is easy. So, I will do that first. That another direction is a bit more 

involved. So, I will do that in the next class, but I want to emphasize here that Galois’ main 

achievement is this theorem. He proved that you can characterize solubility of a polynomial 

purely in group theoretic terms by looking at the group and see if that group is solvable or not. 

Actually, this is not the direction that I want to do. This is the direction that I want to do. So, 

suppose G is solvable. So, there exists a series. So, 1, which is G0, G1, G2, Gr, each Gi, so let 

me just record the properties here and Gi, mod Gi minus 1 is abelian. And what is G, remember 

is K power, G is the Galois group of. So, now you can see is staring in front of you apply main 

theorem, basically. If you apply main theorem to Gi, what do you get? So, you take K power G 



which of course is F. So, let us call that F0. Then you take K power G1. Sorry, K power G is K 

power Gr. Gr is equal to G. Then you take K power Gr minus 1. 

So, now I will write the proof here. This, what kind of an extension is this? Gr minus 1 is normal 

in Gr. So, K Gr, K Gr minus 1 is Galois with Galois group. So, this is the, because we have done 

all the hard work, this is very beautiful and simple now, with Galois group, Gr over Gr minus 1. 

This is exactly the main theorem of Galois theory. You take the Galois group of the entire 

extension. So, here maybe I will write it here also. K and F and I am taking the fixed field of a 

normal subgroup K Gr minus 1. So, this is Galois with Galois group G mod Gr minus 1, which is 

abelian by hypothesis. So, this extension is an abelian extension. Now you take K power Gr 

minus 2. So, I will take K power. 

So, basically, what I will now do is look at this extension. What is this extension? This 

extension, so I will write the reason for that here. Reason for that is or maybe I will squeeze that 

here. So, apply main theorem to K over K power Gr minus 1 which is Galois. So, I am applying 

with this. I will analyse this later, but I am applying to this. This is Galois with Galois group Gr 

minus 1 by the main theorem. This over K is Galois with Galois group Gr minus 1, because if 

you fix a subgroup and take the fixed wheel, the top is the Galois extension with that subgroup as 

a Galois group. Bottom is the Galois extension. If the subgroup is normal, the Galois group has a 

quotient. But here I am taking the top. That is Galois group Gr minus 1. And Gr minus 2 is a 

normal subgroup of Gr minus 1. 

So, this is Galois. So K Gr minus 2 over K Gr minus 1 is Galois with Galois group Gr minus 2 

modulo Gr minus 1 or rather Gr minus 1. So this, I will take this quotient, Gr minus 1 modulo Gr 

minus 2 which is of course abelian. So, and we continue like this K power Gr minus 3, K power 

G2, K power G1, K power G0 which of course is K. G0 is a trivial group. So, the fixed field of 

the trivial group is all of K. And the point of all of this is, this is abelian, this is abelian, this is 

abelian, this is abelian. So, all of them are abelian. 

Now, you look at the result on the equivalence of radical extensions. So, now apply, so maybe I 

will try to finish it here. So, now apply about equivalences, equivalent characterisation of 

solvable elements. So maybe I will quickly go back and show that on which page we have this. 

So, equivalent characterizations are here. Sorry, so I think I went way past this. So, these are the 

equivalent characterizations. What I have now is the second statement. So, I have a tower 



containing all the roots, the end the field contains all the roots and each intermediate extension is 

an abelian extension. So, everything in the last field is solvable. So, I wanted to write down the 

page number so that you have reference to this. So this is page 74. So see page 74. 

So, if you apply that theorem, you have an abelian and extension. You have a tower of abelian 

extensions and the last field contains all the roots. K contains all the roots of f. K is the last field 

implies and each if you want, this is F1, F2, Fr and each and Fi minus Fi minus 1 is abelian for 

all i. So, hence, f is solvable. So, this proves the easy direction. If you have this a solvable Galois 

group, then the polynomial is solvable.  
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So, now, as a corollary, before I prove the next, other direction, we get a different proof. I said, 

remember, I will prove every statement about polynomials in two ways. Any polynomial in the 

polynomial ring FX of degree less than equal to 4 is solvable. Proof, the Galois group is a 

subgroup of whatever S1 or S2 or S3 or S4 in all of these cases and all of these are solvable by 

the previous example. So, Galois groups are solvable and hence the polynomial is solvable. So, 

that is the proof. So, this is a second proof of this result. We have directly exhibited a tower 

which does the job in each 1, 2, 3, 4 degrees but here is a more conceptual idea and using the 

actual theorem that Galois proved.  

So, for degree 4 or less, you have all of these are solvable so their subgroups are solvable by our 

general proposition about solvable groups. So, Galois groups are solvable, and by this theorem, 

the polynomial is solvable. And now the next direction is this. If the polynomial solvable, then 

the group is solvable and because we know that S5 is not solvable or A5 is not solvable, if you 

produce a polynomial of degree 5 whose Galois group is S5 or A5, this theorem will show that it 

cannot be solvable by radicals or rather it is not solvable. 

So, now we do that in 2 ways. First, we will prove this theorem in the next class and after that we 

will work exclusively with a degree 5 polynomials and prove it again, and then we will actually 

give an example of a polynomial of degree 5 who is Galois group is S5 and thereby exhibiting a 

polynomial which is not solvable. 

So, now let me postpone the proof of this direction, because it is not difficult at all. It is just a 

little involved because it uses two, three different facts. So, let me stop this class here and then 

postpone the proof to next class. But before I end the class, because I have a couple of minutes, 

so let me define an important notion, which I am never mentioned before. I really should have 

talked about this earlier. 



(Refer Slide Time: 23:15) 

 

So, let us say L1, L2 are subfields of K. They are all fields. So, the composite of L1, L2 in K 

denoted by the symbol just L1, L2 is the smallest subfield of K containing both L1 and L2. So, 

this is the composite. So, you have K. It contains two fields L1 and L2. The composite is a 

subfield of the bigger field which contains both of them and often we are interested in the case 

when you have a base field F. So, one specific example, in fact, this is the only case we will 

consider. Suppose f is contained in L1. L1 is contained in L2. L1, L2 are contained in K. 

So, you have L1, L 2 are both extensions of F and they are both subfields of K. And suppose L1 

is F of alpha 1 through alpha r and L2 is F of beta 1 through beta s. Then L1, L 2 is nothing but, 



it is supposed to contain both L1 and L2. So, it is supposed to contain all of the alpha i’s and all 

of the beta js. So, and the field generated by them over F is a smallest field because it contains 

alpha i’s, it contains beta i’s and it is the smallest field containing them. So, any field that 

contains both L1 and L2 must contain all of f as well as all of the alpha i’s, all of the beta i’s, so 

you have this. 

So, let me write one exercise here and then we will stop the video. If L1 over F and L2 over F are 

Galois, then the composite is Galois. So, the exercise has easy solution. L1 is the splitting field 

of a separable polynomial f1 over F, L2 is the splitting field of separable polynomial f2 over F. 

Then you show this. This is the exercise for you. L1, L2 is the splitting field of f1, f2 over F. 

So, using this idea basically. So, then I will also call this an exercise. So, if you have two Galois 

extensions, their composite is also Galois extension. So, I want to work with composites in the 

next class in order to prove the reverse direction of this. So, let me stop this class here. In the 

next class, we will prove the converse of this theorem, which shows that if F is a solvable 

polynomial, its Galois group is a solvable group. Thank you. 


