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Welcome back. In the last class, we proved this theorem, in the last couple of classes, which your 

characterises when a given complex number is solvable over a given field. So, there are 3 

equivalent conditions that I wrote and in fact, I forgot the fourth one, which I am write now.  
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Because this will also be useful for us as we go forward and this is a very trivial modification 

from the third one. So, there exist a tower of fields, just like in the previous 3, previous 3 cases. 

So, let me call this M0, M1, Ms such that alpha is in Ms of course and alpha is in the last one. 

Each Mi, mod Mi minus 1 is not only cyclic but it is cyclic of prime order, is a cyclic meaning it 

is Galois. So, Galois plus Galois group is cyclic and moreover plus the index is a prime number. 

Of course, it is cyclic is now irrelevant here because if it is a prime model it is obviously going to 

be cyclic but and the prove actually it only proves 1, 2, 3 are equivalent. So, I leave this as an 

exercise for you for now to show for example that 3 implies 4. There is an easy exercise.  

So, basically all you need to do is if F this is a cyclic extension implies there is a tower, each is 

cyclic where each is prime order. This is easy but I wanted to record it in the theorem itself so 

that we can just appeal to this theorem later. So obviously 4 implies 3 is trivial because if there is 

a tower where each extension is cyclic or prime order, it is of course cyclic but 3 implies 4 you 

can do by first taking a cyclic extension. Take any, take a subgroup of prime index, you know 

that such a thing exists because if P divides the order of the group there exits a subgroup of index 

P. That means order of H is order of G divided by P. Then you take the fixed field of that. That 

would be here.  

This is order P because that is the index and then this index is less than K colon  F and you 

proceed by induction. So, this is just a hint. So, any cyclic extension can be expanded by putting 

more fields in the middle and ensure that each extensions of prime order. So, I just do not want 

to say anything more but the conclusion of the theorem is that it is enough to consider tower of 

cyclic extensions of prime model and 2, 3, 4 are all Galois theoretical statement. So, first one is 

solubility of a radical statement. Now, let us proceed our goal in the rest of the course is to prove.  
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So, what is our goal? So, our goal now for the rest of the course is as follows. So, I am going to 

fix this notation once and for all. So, F is a subfield of C. So, I am going to stick to characteristic 

0 and in fact, I am going to stick to subfields of C and we take polynomials in 1 variable over 

this field F. So, we will first show that n equal to 4, then f is solvable. So, let me write that here. 

So, f is a polynomial and n is the degree of f. So what is the meaning of solvability? It means all 

roots of f so solvable maybe I should write capital f. So, this means all roots of capital f are 

solvable, all routes of small f are solvable over capital F.  



So, if the degree of the polynomial is less than equal to 4, all roots are solvable and if n is greater 

than equal to 4 in general, f is not solvable. So, these are the 2 theorems that we wanted to after 

the world in general is important here. So, let me remark here that there do exist polynomials of 

any degree that are solvable. I am not saying that every polynomial of degree 5 is not solvable. I 

am only saying that there do exist.  

So, for example, if you take the polynomial X power n minus 1 by the very nature of the roots, 

these are all nth roots of unity. This is solvable for all n, so you can always construct 

polynomials which are solvable but for n at least 5, there do exist polynomials which are not 

solvable and however for n equal to 1, 2, 3, 4 all polynomials are solvable. So, we are going to 

give essentially 2 different proofs of this of both of these statements. So, one theorem is, one way 

is to sort of explicitly understand this polynomials. The second way is to understand it in terms 

of solvable groups and state the theorem that Galois in fact proved which is a beautiful theorem, 

which says that a polynomial is solvable if and only if its Galois group is solvable. So, that I will 

do separately. 
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So, let me first, today our goal is to do the following theorem. If I do not finish it today, I will 

finish it next class. So, the next 2 classes, the goal is to prove the following theorem. So, let F be 

a subfield of C and let F, small f be a polynomial of degree less than or equal to 4. So, then I 

want to show then f is solvable. So, let me just do some easy cases first before I develop some 

theory that will be useful for us later.  

So, first degree f equal to 1, then f is of the form, some x minus a, we can always multiply by a 

scalar with of course a in f. So, f is obviously solvable. So, I keep forgetting this, solvable over 

F. The triviality. Degree f is 2, then f is some x square plus bx plus c and this of course, if f is 

irreducible, you have to construct a bigger field which where it splits, but otherwise the roots are 

in capital f itself, but either case, quadratic formula I will simply write it like this, quadratic 

formula does the job because the roots are of course, they are contained in a field like this.  

So, this is a degree 2 extension, at most would degree 2 extension. It could be degree one 

extension if the discriminant is already a square. So, I want to highlight that here. This is F if is 

in F or so let us say K is this which is a splitting field so K equal to F if this, otherwise it is a 

degree 2 extension and in either case, the roots live in a radical extension because any degree 2 

extension is, any degree 2 extension is radical. We do not even need to do that. We can also use 

the theorem that we proved in the last class, which I recalled at the beginning of today's class; we 

do have a cyclic extension which contains the fields, which contains the root.  



So, either way it is, another way of arguing this is this is cyclic. That means roots are solvable 

and hence F is. Degree F equal to 3, I want to spend some time, but I first want to claim that I 

have already done this. We already showed so let me set it up properly. 
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So, let us say k is a splitting field of f over capital f. So, now we have a bunch of possibilities. 

So, in this case solvable. This is solvable because this can happen, for example, if your cubic 

polynomial is reducible and it acts as a reducible quadratic and a linear polynomial. This can 

very well happen. So, in that case it is solvable. Remember that the splitting field degree divides 

6, which is 3 factorial. So it is 1, 2, 3 or 6. So, in this case K over F is cyclic. I mean in fact in 

both cases 2 and 3 it is cyclic and hence K over F is solvable because every alpha in K is in a 

cyclic extension.  

So, if you go back to the theorem that I recall at the beginning of today, the apply the third or 

second or fourth, all of these will work. So, there is a tower where each extension is abelian or 

cyclic or cyclical or primordial. All these 3 conditions are satisfied. So, everything in the end of 

field is solvable. Here, there is only one single extension. The tower consists of a single 

extension and this is abelian or cyclic or cyclic of in fact primordial. This is solvable. So, every 

root is solvable and finally the last option is in this case, we already showed as part of an 

exercise.  
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So, I this is degree 2 and this is degree 3. So I if you remember we proved this exercise. Any 

Galois extension of degree 6 is solvable because you can take a subgroup of order 3 look at its 

fixed field because that's a group has index 2 it is normal. So, this extension is Galois. So, degree 

2 Galois means it is cyclic and this is degree 3, of course, so it is also Galois. So, there is also 

fine. However, I want to do a little more analysis of degree 3. So, now I will pause the proof and 

do some generalities. Pause the proof here for some general statements. I will come back to the 

proof in a few minutes but let me make some general remarks. 
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So, as always F is a subfield of C, small f is a polynomial of capital f and degree f is at least is n 

which is a positive integer. So, some positive integer. So, I want to first define for simplicity the 

Galois group, the terminologies that the Galois group of f is the Galois group of the splitting 

field. So, again, I should write here Galois group of capital, small f over capital F is Galois group 

of K over F, where K is a spitting field of small f over capital F. So, first, I claim that so I make 

some remarks here. So, let say proposition.  

So, the Galois group of f is certainly is a subgroup of Sn. This is clear. This is easy because f is 

degree n, f has n roots. Maybe they are repeating because F could be reducible nevertheless if it 

has its roots alpha through alpha n and so let us say G is the Galois group of f and if sigma 

belongs to G, sigma permutes alpha 1 through alpha n. So, there is a map from G to Sn. Take 

sigma and look at it as a permutation of alpha 1 through alpha n and sigma fixes every alpha i 

then sigma is identity on K because remember K is f alpha 1 to alpha n.  

By definition K is a splitting field of capital of small f of capital f, so it is generated by them. So, 

that means this is an injective map. Injective group homomorphism. So, that means g is 

isomorphic to a subgroup of Sn. It could be any subgroup a priori.  
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Now let us say f is irreducible implies, this is important for us. So, this is sort of an important 

proposition. So, f is irreducible implies G is isomorphic to a transitive subgroup of Sn. Why is 

this? First of all, what does transitive mean? Transitive means given any 2 indices, i, j in the set 1 

through n, there exists sigma in G such that sigma i is equal to j. So, it means the orbit of any 

root is the entire set of roots. So, if you forget to the roots and you just think of G as permuting 

indices 1 through n, given any 2 indices, there is a group element which sends one to the other 

because that means sigma there is a sigma which sends 2 to 3. There is a sigma which sends 2 to 

4 and so on and why is this true? 



So, let alpha 1 through alpha n be roots of f in K which of course is f alpha 1 through alpha n. 

Then what is f alpha 1? This goes back to some of the earliest thing we did in the course because 

f is irreducible, we have this but this is also same as F alpha 2. So, there is a map like this which 

sends which is identity on F and sends alpha 1 to alpha 2. So, basically here alpha 1 goes to x 

bar, alpha 2 goes x bar. So, we compose these 2 to get this map and then you can always extend 

this using our standard extension theorems.  

Extend this maps so sigma sends alpha 1 to alpha 2 and fixes F. That means sigma is in G which 

is Galois group of K over F and sigma alpha 1 equals alpha 2. So, the upshot is, basically the 

upshot is given any 2 roots of alpha 1, alpha 2, there exists sigma in G such that sigma alpha 1 or 

let me just say alpha i, alpha j, this is a property of group, the field homomorphisms. You can 

interchange any 2 roots.  
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And let me warn you that this is not true if f is not irreducible. For example, if you take X to be x 

minus 3, x square plus 1 in QX. So, the roots are 3, i, minus i. So, the Galois group of f if I use 

this notation is a subgroup of S3, but in fact it is S2. So, if you call the roots these roots alpha 1, 

alpha 2, alpha 3, the only things here are those so G only contains the trivial identity 

homomorphism and the automorphism which sends 2 to 3 and 3 to 2. In fact, G is equal to that so 

G is not transitive. Talking about roots, G has no permutation which sends 3 to i for example, 

because 3 and i have different irreducible polynomials. So, it is not transitive.  

However, if f is let us say, X cube minus 2, then G is a transitive sub group of, here roots are 

cube root of 2, cube root of 2 omega, cube root of 2 omega square. So, in fact G is equal to S3 in 

this case. So, irreducibility is important. So, the proposition 2 says, if f is irreducible G is 

isomorphic to transcripts subgroup of Sn and this sort of puts conditions on what possible Galois 

groups can occur. So, this is important for us to keep in mind. I will use this later on.  
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So, now let me continue with general remarks. I will go back to the general situations, f is an 

arbitrary polynomial. Of degree n and let us say Alpha 1 through Alpha n are roots of f. So, 

capital k is always fixed to be the fixed field of small f and the roots are alpha 1 through alpha n. 

So, the discriminant of f is defined to be, so discriminant of f or d usually will denote this is 

simply the product of alpha i minus alpha j whole square and we do this for every i less than j. 

For every pair of indices, i less than j, we take alpha i minus alpha j. So, the claim now is D is F.  

So, a priori it is in K, of course because alpha i and alpha j are in K. Alpha a are all in K. So, this 

is in K but in fact, it is in the base field. This is because let sigma be in the Galois group of K 



over F. Let us call that g. So then, what is sigma of D? What is Sigma of D? So, I claim that 

sigma of D since sigma permutes alpha i, so this is an easy exercise for you. This set, I claim that 

sigma, so basically I want claim this, so let me explain this.  

So, here, for example if n equal to 3, just as a simple example. So, here, we have alpha 1 minus 

alpha 3 or let us say alpha 2 first, alpha 1 minus alpha 3 square square and alpha 2 minus alpha 3 

square and now you take any sigma in g. It simply permutes the 3 roots. As an example, let us 

say alpha 1 goes to alpha 1, alpha 2 goes to alpha 3, alpha 3 goes to alpha 2. So, here we have 

alpha 1 minus alpha 3 whole square. Sigma is an automorphism. So, you can just apply inside the 

bracket. Alpha 1 goes to alpha 1, alpha 3 goes to alpha 2, alpha 2 goes to alpha 3 and alpha 3 

goes to alpha square, alpha 2.  

So, remember sigma of alpha 2 minus alpha 3 is alpha 3 minus alpha 2. However, once you 

square, so this is minus of alpha 2 minus alpha 3. So, this is sort of a crucial observation. So, 

alpha 2 minus alpha 3 goes to minus of alpha 2 minus alpha 3 but because D is squaring all these 

terms, you get no new element. So, this I will leave as an exercise for you to, the general proof. 

Essentially the same idea.  
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So, sigma of alpha i minus alpha j is an alpha of sigma i, thinking of sigma as a permutation. So, 

you take the product, apply sigma inside the product. Everything appears somewhere else and 

because sigma is an automorphism of alpha i equal to alpha j, we are able to say that sigma of D 



is equal to D but that means so that part is an exercise. So, this implies sigma D is equal to D. So, 

this I will let you to do that. So, hence sigma of D equals D for all sigma in g. So, this implies D 

is inside K power G which is F because K over F is Galois, because it is a splitting field of a 

polynomial and we are in characteristic 0. So, D is in capital F.  

So, that is a statement and some facts that I will write here for degree 2, you take F to be a degree 

2 polynomial. What is the discriminant? You simply have alpha minus alpha 2 whole square. 

There is only one pair i, j and if you think about this, this is exactly the, if you think about this, 

this is if f is x square plus a1 x plus a2, then you get this, so this or rather maybe I will just write 

it. The x square plus bx plus c, then you get the usual discriminant that you are familiar with 

because alpha 1 plus alpha 2 remember is minus B, alpha 1 times alpha 2 is C.  

So, use this to conclude this because if you take alpha 1 minus alpha 2 square or alpha 1, yeah so 

alpha 2 that will be alpha 1 plus alpha 2 whole square minus 4 alpha 1 alpha 2 because this is 

alpha 1 square plus alpha 2 square minus 2 alpha 1 alpha 2. Here you get plus 2 alpha 1 alpha 2, 

you subtract minus 4 alpha 1 alpha 2 you get the right thing, but this is b square minus 4C. That 

is all. So, I have done the exercise for you.  

So, this of usual discriminant but if n equal to 3 in which case f equal to so I am going to write it 

like this, f is x cube plus a2 x square plus a1 x plus a0. Then discriminant of f has a formula 

which is significantly more computation to do than the degree 2 case. However, you can do this. 

It is not completely impossible, but you can do this. So, this is a fact that I will write which in the 

examples I am going to use this occasionally. So, this will happen to be minus 4 a2 cube a0 plus 

a2 square, a1 square plus 18 a2 a1 a0 minus 4 a1 cube minus 27 a0.  

So, this is just a significantly messier formula but it is irrelevant for the theory that we want to 

develop. So, I just want to record it because in some examples I might want to mention this. In 

general, of course in higher degrees the discriminant becomes significantly more complicated to 

write.  
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And we do not care for a closed formula for it but now let me make this third proposition which I 

want to do. So, let F be a subfield of C as always. F is a polynomial in the base field and degree f 

is n. Let D be the discriminant of F and let delta be square root of D. Remember square root of D 

is actually alpha product, alpha minus alpha j, i less than j. Discriminant is the product of the 

squares of the differences. Square root of the discriminant is just product of the differences. This 

is of course in K.  

Now I claim that whether it is so D is delta square, whether delta is in F or not determines 

something about the Galois group. So, then the first statement is if delta is in K or rather delta is 

in F that is D is a square in F. That means D has a square root of F. Then G is contained in An, 

An is the alternating group. That means it is a subgroup of Sn consisting of even permutations. If 

delta is not in F that is D is not a square, then of course G is not contained in here. So, the proof 

is so recall An equals even permutations in Sn. So, this is a normal subgroup of index 2. So, the 

order of Sn is n factorial and there are exactly half of them which are even. So, this is just to 

recall for you.  

So, now note the following. G is not in An. This is only if G contains an odd permutation. So, of 

course, remember, G which is the Galois group I should have mentioned that G is the Galois 

group of F which is the Galois group of the splitting field of K of F over F. That G contains an 

odd permutation. It is the statement that G is not in An but if it is in An, it cannot contain an odd 



permutation and if it contains in an odd permutation, if it is not contained in An, it means it 

contains an odd permutation. This is just a definition of not being An.  
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Now that means I claim now sigma delta is equal to minus delta. So, this point is related to this. 

This proof that I asked you to do because if sigma is an odd permutation so let us say sigma n is 

odd, then that means it interchanges, you can argue like this. I mean so it, so it can be written as 

a product of, so maybe sigma can be written as a product of an odd number of 2 cycles or 

transpositions. Now let us say 5 transpositions. Now, let us go back to delta. Delta is right here.  

So, if sigma can be written as a product of 5 transpositions, all 5 of those will interchange. Alpha 

i and alpha j. So, the sign of alpha i minus alpha j changes. So, there will be 5 sign changes. All 

together, they will give a minus sign so that means sigma of delta is minus delta. So, sigma is 

odd, this happens. This basically if and only if because if sigma is even that means it can be 

written as end product of an even number of transpositions or 2 cycles, then there will be an even 

number of sign changes and they cancel each other and delta is fixed by sigma.  

So, sigma delta is minus delta if and only if it is odd. That means delta is not in, of course 

because we are in characteristic 0 minus delta is not delta. So, sigma is not in KG that means it is 

not in F. So, this is a bit confusing but what I am saying, is that for a fixed delta in Sn, if it is not 

enough that means sigma, that means some sigma does not fix delta but whatever that does not 

fix delta must be odd.  



So, basically the exercise that I want to do is given sigma in G either sigma of delta is delta or 

sigma of delta is minus delta and this happens only if and only if delta is even. This happens only 

if, if and only if this is odd. So, this is the exercise which essentially sort of is proved here but I 

want you to spend some time to think about this and make sure that you understand. This is a 

crucial observation about Galois groups of polynomials. The image of the square root of the 

discriminant under a Galois group element is either always that itself or it is minus.  

So if it is not, if it is in the fixed field, that means it everything in G fixes it. That means only 

things in G are even permutations. That means G is an Sn. If it is not in F that means something 

in the group element, something in the group does not fix it but that means something in the 

group is not odd, not even. That means something in the group is even. That means G is not 

contained in A. So, this I went over this somewhat fast, but hopefully this makes sense to you. 

So, please make sure that you sort of understand what I have done here, whether the Galois 

group is in alternating group or not is deducible from the square root of the discriminant.  
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Now returning to the proof of the theorem. So, the pause that I said earlier now we are going to 

return to the proof of the theorem, which is that any degree 4, 3, 2, 1 polynomials are solvable 

and let us first look at degree f equal to 3. So, assume that 1 and 2 I have done. So, I am going to 

safely assume that f is irreducible because if it is not irreducible it is a product of a linear 

polynomial and a quadratic polynomial and each of them individually are solvable so fs. So, I 

might as well consider irreducible degree 3 polynomial. Then, the Galois group of f is a 

transitive subgroup of S3 because f is irreducible by the proposition 2, its Galois group is a 

transitive subgroup of S3.  

There are only 2 such things namely S3 which consists of all of them or A3 which consists of the 

3 cycles because other subgroups of S3 are the order 2 subgroups and none of them is transitive 

because for example, if you take this this does not send 1, 2 ,3. So, this cannot be transitive. So, 

there are only 2 possibilities for the Galois group of an irreducible cubic. It is either S3 or A3 and 

the differentiating feature of these 2 is in one case, you have odd permutations in the other case, 

you do not have odd permutations.  

So, let me just summarize what I have degree 3, f as above so that means irreducible degree 3. 

Then delta is square root of d. Then the first part is delta is in F, if and only if Galois group is A3 

and of course in that case K colon G is 3. In the second case delta is not in F, that means G is 

equal to S3 and in the case K colon G is 6. So, these are the 2 features of the Galois 2 cases for 

the Galois group of an irreducible polynomial.  



So, let me quickly give you a couple of examples covering both cases. So, let us say f is X cube 

minus 3x plus 1. So, then as an exercise use Eisenstein after substituting X minus 1 for x. Of 

course, you cannot apply Eisenstein right away. So, you have to change the variable to conclude 

f is irreducible. So, that I will let you do this. Of course, it is in the rational polynomial ring. So, 

this is a irreducible polynomial. 
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So, what is the discriminant of this? So, this is more or less the only place I will use the formula 

that I wrote earlier. Very messy formula but you can compute it and I will simply say that it is so 

equal to this. So, I simply say that use the formula. There is not much theory here, so this is not 

just it is a computation because it is not just the computation. So, this is not a square in Q. Of 

course, it is not a square in Q. For one thing, it is a negative number. So, hence K colon F is 3. 

The Galois group f is A3. So, some calculations of the discriminant tell you immediately what it 

happens. So, in the other case, we get x cubed plus 3x plus 1 plus 3x plus 1.  

So again, this is irreducible. Use the same I think change of variable and use Eisenstein. In this 

case, discriminant of f turns out to be 3 power 4 is a square in, I am sorry, so I think I wrote 

something wrong here. So, this is 3 power 4, I am sorry is a square, about that. So, x cube minus 

3x plus 1 is 3 power 4, I do not want to do the calculation in the video. It is a waste of time 

because you can use the formula here. So, just apply the formula and you make sure that I did 

everything correctly here. So, here is a square.  



So, the Galois group is A3 and in this case it is the other one. So, minus 5 times 3 cubed is not 

the square so K colon F is 6 and Galois group is S3. So, in this case, you have a degree 6 

extension with Galois group 6 S3. Here you have a Galois degree 3 extension, Galois group A3 

which is of course isomorphic to Z mod 3Z. So, now also I think this is a polynomial that I said 

earlier has 3 real root. One can check its graph, looks like this. So, just to remind you that that is 

the polynomial that we considered earlier. So, now that leaves for me to prove the theorem in the 

degree 4 case.  
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Next, let me stop the class here. I will do degree 4 in the next class and that finishes the proof of 

the theorem which says that any polynomial of degree less than or equal to 4 is solvable over 

base field capital F. Thank you.  

 

 


