Introduction to Galois Theory
Professor. Krishna Hanumanthu
Department of Mathematics
Chennai Mathematical Institute
Lecture No. 39
Characterization of Solvability — Part 2

Welcome back. In the last class, we proved that Galois extension of degree 6 is always solvable.
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Along the way we proved this important theorem, which says that if you have a cyclic extension
and you are joined in alpha to both fields in the extension, you also get a cyclic extension and the
degree of the new extension divides the degree of the old extension. So, the goal today is to the

following theorem.
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So, let me write down the theorem and we will spend the whole class proving this. Let F be field
of, let F be a subfield of C, let alpha in capitals alpha be a complex number be algebraic over F
So, then the following are equivalent. The 3 statements that | will make are all equivalent to each
other. Alpha is solvable over F which is to say that is there exists a tower. | am going to write the
tower as follows. So, F equals FO, F1, Fr such that Fi over Fi minus so, so let me write like this.
A simple radical for all i and alpha is in Fr. So, it is simply saying that alpha is solvable over f
means alpha is in a radical extension of F but that radical expression must be the end of a tower

of simple radical extension. So, this is just the definition.

The second statement is, there exists a tower. So, in all 3 statements, there are towers with the
differing properties. There exists a tower of fields. So, let us call this F equals LO L1 contained in
Ln such that of course, alpha is in the end of them and each of the extensions is abelian that is
Galois plus Galois group is abelian as we know very well an adjective which is used for groups,
if you use it for field extensions, that means that field exploration is Galois and the Galois group

has that adjectives. So, in this case, it is the Galois and the Galois group is abelian.

In the third statement is exactly as to except that the word abelian is replaced by cyclic. There
exists at tower of fields. It is a F again starting with F, now KO K1, all the way up to Km, let us
say such that of course alpha is in the last one and each Ki over Ki minus 1 is cyclic which is to

say Galois plus Galois group is cyclic. So, that is the 3 statements. So, just stare at this. It is



important that you understand the first statement has to do with solvability by radicals as
understood before Galois, as understood for hundreds of years before Galois, 2 and 3 have to do

with Galois Theory, which is Galois’ ingenious idea to connect field theory with group theory.

So, 2 and 3 are really group theoretic statements saying that there are towers of extensions, there
with extensions being either abelian or cyclic. So, it is important that we prove this equivalence
and then we will attack the possibility of solving quantics by radicals via 2 and 3. So, we have to

settle once and for all the equivalent of these 3 statements.
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So, I will now prove the equivalence of this. Some of this is essentially coming from the
previous class where we proved that cyclic extensions are solvable. So, let us see. So, we are
assuming that, we are assuming that this is the new thing really, 1 to 2 is new, 2 to 3 is trivial, 3
tol is essentially done by us. So, let us do 1 to 2 first because we new so we are assuming that
alpha is solvable. So, let F contained in F1 contained in F2 contained in Fr.

So, alpha is in Fr and suppose each Fi because each Fi or Fi minus 1 is a simple radical extension
suppose Fi is generated over a Fi minus 1 with by alpha i with alpha i power Ni in Fi minus 1.
This is the meaning of the extension being simple radical. 1 am just giving names to the
generators and the exponents because we have now our extensions so we have to keep track of
the all the things. So, we say that F1 is generated over FO by alpha 1 and alpha upon power nl is

in F1 or FO and so on. So, this is the notation.



Now | am going to consider the following roots of unity. So, let, so remember we have nl
through nr and alpha 1 to alpha r coming from this tower. So, we take the corresponding n th
roots of unity. Primitive n1, n2, nr th roots of unity. We can take them in C because we are
working with subfield of C now. So, we have completely switched our characteristic to 0 here
and subfields of C in fact. So, these are primitive. If nl is 2, | take primitive second row which is
minus 1, of course that is already in F but if n2 is 3, | will take omega, if n3 is 4, I will take i and

S0 on. So, these are those roots of unity.
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Now consider following tower. So, | am going to write down the tower and | will carefully look
at this. So, first I will do FO. So, let me try to squeeze this here. | do FO adjoint zeta n1, then FO
adjoined zeta nl n2. So, maybe | will just go to the next page because | want to squeeze
everything in the same page. So, consider the following tower. So, what | will start with FO
which is of course F. Remember the given tower is this. | am going to add all these nth roots to

FO because | want to use our original theorem about extensions.

So, then I will do F zeta n1 F zeta n1 comma zeta n2, FO and | will one by one attach all of them
and finally attach zeta nr and now, | will put F1 zeta, remember FO is contained in F1. So, | will
just add all of them to F1 also and keep doing this and finally I will do Fr zeta nl zeta nr. So, |
have changed the original fields completely. So, originally, we have this. So, basically, we add

zeta nl to zeta nr to all fi. So, for the first one, | just break the addition into one by one.



Now we want to claim that this is an extension where each, this is a tower where each extension
is abelian. Thereby proving 2. So, of course, alpha is in here. So, alpha is in Fr. So, alpha is in F
adjoined this. You are only enlarging the field. So, alpha will remain here and 2 says, there is a
tower of abelian extensions with alpha being in the last one and here is the tower with alpha in
the last one. So, why is this? Why is each of them abelian? So, one by one, let us check. What
about FO contained in FO theta 1. This is a cyclotomic extension. So, abelian. So, this is covered

in our class about cyclotomic extensions.

In general, every time you have a cyclotomic extension, recall from, so if you have cyclotomic
extension, it is a the Galois group is isomorphic to a subgroup of Z mod nZ star. This is abelian.
So, this is abelian. So, this is just, this is exactly the result we proved in the corresponding, |
mean the theorem in cyclotomic extensions class. So, these is abelian. So, let me write that here.
This is abelian. What about this? This is also abelian of course because this is also a cyclotomic
extension. You are adding zeta into 2 F zeta nl. So, this is abelian. This is abelian. So, all of

these are abelian. So, up to this everything is abelian.

So, similarly F zeta, F circle zeta ni over F circle n1, zeta ni minus 1 are all abelian. So, from i
equal to 1 to r. So, these are all abelian. What about the next one? So, this, let us focus on this.

What about this? I claim this is also abelian. Now here is where we will use Kummer theory.
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So, what about this? By the first observation what we have is F1 over FO, this is cyclic, this is
radical. So, | now claim this is also, radical. So, why is that? So, think about this, why is that
radical? That is radical because F1 is FO alpha 1. So, F1 of zeta nl, zeta n r is FO of zeta nl zeta
nr adjoined alpha 1. So, the same thing will generate this field over this field and alpha 1 power

nlisin FO. This implies, of course, it is in FO power zeta nl to zeta nr.

So, this is also a radical extension. So, that is okay, but now we have a radical extension so, this
is a radical extension and what is a degree of that extension? So, this radical extension contains
the base of this radical extension contains a primitive contains zeta n1 which is a primitive nth

root of unity, nl th root of unity.
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So, now here is some general facts. So, the, | claim that so what we have now shown is so let me
go back to the Kummer extension theorem that we proved it. So, let me explain how we use that.
I think | went way back. So, this is the Kummer extension theorem. So, let us look at the main
theorem and in fact, | wanted to look at the theorem 2. So, if you have field containing a
primitive nth root of unity and N is the extension of that, then K is the splitting field of that but
okay, actually I do want theorem 1.

So, you have a field containing primitive nth root of unity and K is splitting field of X power n
minus A. Then it is cyclic. So, what | want is this. So, | want this statement. So, if | claim that in

our situation the hypothesis is satisfied. F is a field containing a primitive nth root of unity. K is



the splitting field of x power n minus a. Then that extension is cyclic. So, primitive nl th root of

unity and this is the splitting field of x power n1 minus. So, | so let me just rewrite this.

(Refer Slide Time: 17:38)

So, F1 that adjoin zeta nl to zeta nr is the splitting field. This is clear because F1 is the splitting
field of, F1 is the is a radical expression. It is not necessarily splitting field. So, F1 over FO is not
necessarily splitting field extension, not a normal extension. However, it is obtained by adjoining
a root nl th root of alpha 1 but now in this new extension, you have adjoined nl th root of alpha

1 power n1 and hence you attached because zeta n1 is there in the base field.

Once you attached, so basically what | am saying, is that let a be alpha n power nl, then all the
nl th roots of a are in F1 zeta nl zeta nr. So, it is a splitting field and the base field contains sub 0
zeta nl. Hence by theorem 1, in Kummer extensions class: F1 zeta nl, zeta nr over FO zeta n1,
zeta nr is cyclic and hence abelian. So, basically, my goal has always been to use the theorem 1
but in order to use that, | need my base field to have roots of unity, which I have achieved by

adding them a priori. So, | hope this is clear.

So, the crucial thing is theorem 1 in Kummer theory. In order to apply theorem 1, we need the
base field to contain primitive nth roots of unity, which | achieved by adding this. So, this is
abelian. So, this is abelian. What about this? Exactly the same reason. This is also abelian except
that we work with N2 now because this is an extension a priori where in n 2 roots is attached. So,

you perform the same logic F2 or F1 but F2 adjoined all the roots, F1 adjoined all the roots, the



relevant thing is only zeta n2 that is there. So, by theorem 1 of Kummer extension that is cyclic

and hence abelian. So, everything is abelian.

So, this tower is a tower where each expression is abelian and hence 2 is proved. | hope this
argument is clear. What we do is, take the original tower where every extension simple radical
but figure out which roots of unity are required which come from the powers, the radicals which
are attached in this simple radical extensions, attached the roots of unity for those nis and then
argue the initial cyclotomic extensions are all abelian by our cyclotomic extension theorem and
after that, after FO after you attach all of them, you use Kummer Theory to argue that are all

abelian. So, that proves 2.
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Now 2 implies 1 is trivial because remember what is 2. 2 is that there is a tower where the end
field contains alpha and each is abelian. So, 2 is not trivial, 2 to 1 is not trivial. So, let me, so we
have to prove something. So, we will show that given an abelian extension K over F, there exists
a tower such that each Fi by Fi minus 1 is cyclic. So, this is more or less trivial because what do
we do? So, claim is this. Prove so let G be the Galois group of the original abelian extension. So,
this G is abelian. K over F is abelian so it is Galois with Galois group abelian. So, let H be a

proper sub group, G proper cyclic subgroup of G.

Of course, G is cyclic then we are done. If G is cyclic then we are done because K over F is a

cyclic extension. So, then we consider K, K power H and F. Remember this is cyclic. So,



actually what | mean is, | do not need proper cyclic subgroup of G, proper cyclic proper cyclic
subgroup. So, this G, this is Galois extension, | mean everything is abelian. So, this is Galois
extension with Galois group G mod H, and this is strictly more than 1 because it is a proper
subgroup. So, by induction, so apply induction to this.

So, note that KH, so K over KH is cyclic. This is okay. KH over K or KH over F is Galois, with
abelian Galois because G’s abelian is important here. So, every group is subgroup is normal. So,
every intermediate field over the base field is Galois. So, the main theorem is required here. So,
this is abelian with the degree strictly less than the original extension, so we then induct. So, this
can be populated by a series of cyclic extensions. You attach one more to get the desired cycle

extension.

So, this implies 1 because if you are given a tower of abelian extensions, you expand this tower
by putting in lots of subfields where each extension is cyclic. Similarly, you do that for L1
contained in L2. Ln minus 1 contained in Ln and you get a much bigger tower but with each of
the intermediate extensions being cyclic. So, 2 implies 3, this is not 2 implies 1. | am trying to
prove 2 implies 3. So, given an abelian extension, it is rather easy to get a tower of cyclic

extensions. So, you do that for each abelian extension and you have done.
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Finally, 3 implies 1 and this is something that we have done essentially in a special case in the

previous video where we prove that a Galois extension about 6 is solvable. So, this is crazy



because the idea is that we are given so let me just summarize the method. So, FO is, f is KO, K1,
Km or n, Km such that alpha is in Km. Each Ki over Ki minus 1 is cyclic. So, what do | do here?
So, what we do here is we let ni be the extension degree of Ki and Ki minus 1 and let us choose
zeta nl to zeta nm, primitive they are all complex numbers, primitive n1, n2 th, nm th, roots of

unity and then attach all of them to KO.

So, first we do KO, adjoined KO zeta n1 and KO zeta n1, zeta n2, KO zeta n1, zeta nm and then
you do, K1 zeta nl, zeta nm, all the way up to Km, zeta nl, zeta nm, just like in the first case 1
implies 2. Here, the only difference is the ni we have chosen are the degrees of the extensions. In
1, we have chosen the ni to be the radicals we needed to take So, now you claim that this is the
desired tower of simple radical extensions. Why is this?

Of course this is simple radical because it is a cyclotomic extension. Zeta n1 power nl is 1 so
that is in K1 KO this is simple radical. This is simple radical because these are all obtained by
adding an nth root of unity. A primitive nth root of unity ni th root as ni. So, do they do not
present any problem. What about this and here is where the hopefully the Galois group extension

of order 6 will be recalled to your mind now.
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So, we have K1 over KO is cyclic. That is given to be that case. So, this is cyclic. Adjoined all of
these so basically, | will argue just for complete clarity. So, this is cyclic by the preposition.
Remember the proposition we proved. So, if your cyclic extension you attach something, it will



remain cycling and you attach 1 more, this is also cyclic because this is cyclic, you apply the
preposition and finally K1 zeta n1, zeta nm over KO zeta nl1, zeta nm, they are all cyclic. So, this

is cyclic. So, this is cyclic.

First, it is cyclic. It is cyclic, but the base fields contains zeta nl and base field contains, second
argument is, based field contains zeta nl which is the primitive nth root of unity, and now
remember this is extension of degree nl. So, this is a divisor of nl by the proposition that we
proved. So, this, whatever this nl1 prime is, nl prime divides nl So, this implies some power of
zeta nl, | think it is n1 by nl prime is a primitive nlth prime root of unity. So, I will write this
here. So, this is an extension of degree nl prime where the base field contains degree zeta nl
prime because once you have a primitive eighth root of unity, some power of it will be a

primitive fourth root of unity.

So, once you have a primitive and n th root of unity, a suitable and n1 prime divides n1, suitable
power of the primitive n 1 root of unity will be a primitive n 1 prime root of unity. So, this is a
cyclic extension of degree n1 prime with base field containing a primitive n1 prime root of unity.
So, now let us go back to one final time the lectures on cyclotomic extensions, Kummer
extensions and let us look at theorem 2. So, we have a field containing a primitive nth root of
unity and an extension containing a cyclic extension of that degree n where will contains an nth
root of unity. Then K is the splitting field of some polynomial like this. That means K over F is

irreducible. K over F is simple radical.
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So, by theorem 2 Kummer extensions, so I think page 42 in this notes, K adjoined, K1 adjoined
is a simple radical extension because it is obtained by adding nl th power of nl th root of some
element of this field. So, similarly, so this is simple radical, this is simple radical, this is simple
radical. So, everything is simple radical. So, alpha which is in, of course alpha is in here in Km
and so | will just write it one more time over FO KO which is F is a radical extension. So, alpha is
here and these radical extensions because this is a radical extension of this because there is a
tower starting with this, ending with this and where each extension is a simple radical extension.

This is radical extension containing alphas so, alpha is a solvable over F.

So, this proves the theorem that | started this class with and now we are ready to attack the
question of solving polynomials by radicals. More precisely given a polynomial, is it solvable or
not, we want to address and in the next video, we are going to settle the case of degree 1, 2, 3, 4
and then after that we will tackle the case of degree 5. So, let me stop today here and in the next

class we continue with solving polynomials by radicals. Thank you.



