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Welcome back. In the last class, we looked at radical extensions, as well as the notion of 

being solvable by radicals. So, a simple radical extension is one, where it is generated by a 

single element, which is a radical; namely it is an nth root of an element of the base field. A 

radical extension is one, where it is, where, there are lots of simple radical extensions in the 

middle. The entire extension may or may not be a simple radical.  

And then, we say that a particular element is solvable by radicals, or simply solvable, if it is 

inside a radical extension; and the extension itself is solvable, if every element is solvable. 

And a polynomial is solvable, if its roots are solvable. So, we looked at examples of simple 

radical extensions. Kummer cyclotomic extensions are simple radical, and we also looked at 

examples, which are radical but not simple radical. So, Q root 2 root 3, as well as splitting 

field of a polynomial with 3 real roots.   
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So now, our goal today is to prove the following theorem, that splitting fields of cubic 

polynomials are in fact radical; need not be simple radical, but they are radical. So, the 

theorem, that I want to prove today, is let K over F be a Galois extension of degree 6; of 

degree 6, then K over F is solvable. That means K is solvable over; that is every element of K 



is solvable over F. That is our goal. And I am going to assume characteristic is 0, just to avoid 

some, maybe complications in some specific examples. 
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So, in order to prove this theorem, I am going to prove a very crucial result, that will be 

essential for everything that we do in the rest of the course. So, this I am going to call a 

proposition, this will be crucial for us. Let K over F be a cyclic extension. Remember, that 

means K over F is Galois, and the Galois group is cyclic. A cyclic extension is a 

Galois extension, whose Galois group is cyclic. 

Let, alpha be, I mean so, in L; where L is an extension of K. L is a completely irrelevant for 

us, but all I am really using L for is to get hold of an element, which is in L. So, L need not 

be, alpha need not be in K. So, L is irrelevant, except to provide us this element alpha. So, 

then the statement is K alpha over F alpha is also a cyclic extension. And moreover, the 

extension degree of K alpha over F alpha divides the extension degree of K over F. 

 So, what we have is, the picture is, I will draw it better. So, you have maybe here; L is some 

big field contained in K. There is an element alpha. So, you adjoin that to K, and L alpha. So 

this is cyclic, implies this is cyclic. And the degree here, divides the degree here. It can very 

well be smaller, but it divides it. The proof is fairly simple. And it is crucial for all our 

arguments that follow. 

So, first let us take the Galois group of the original extension to be G. So, I will first show 

that, K alpha over F alpha is Galois. Because remember, a cyclic extension is a Galois 

extension, whose Galois group is cyclic. So, I will first show that, it is Galois, then we will 

show that, its Galois group is cyclic. 

 So, by one of the characterizations of Galois extensions, we know that K is the splitting field 

of a separable polynomial. Separability comes of free, because we are in characteristic 0. But 

the crucial thing is, it is the splitting field of a polynomial. So, say K is F alpha1, alpha2, 

alpha r, where alpha i are roots of f. So, this is trivial statement by the way, the whole 

proposition is easy; and this is even easier.  

So, why is this Galois K alpha over F alpha? So then, K alpha can be obviously written as F 

alpha, adjoin alpha1 through alpha r; and f of course is in F X, which is a subring of F alpha 

X. So, K alpha is a splitting field of a separable polynomial over F alpha. It is generated by 

the roots of the same polynomial. So it is a Galois; simple, right?  

So, the same polynomial in capital F X, whose splitting field is K, will serve the job, role for 

us. We will do the job for us, because K alpha is a splitting field of same polynomial. Now, 



we will just change the base field, and the polynomial is in the base field. So, there is no 

problem. So, this is Galois, and by the way, I do not think I need characteristic 0 here. So, 

separability is an assumption, but we are working in the same polynomial, so that is 

separable.  

Second statement is Galois K alpha over F alpha is isomorphic to a subgroup of Galois K 

over F. So, this proves both statements that Galois K alpha over F alpha is cyclic, and this 

divides this. Because this order is K alpha colon F alpha, this order is K colon F. So, why is 

this? This is because of the following reason. So, let sigma be in the Galois group of K alpha 

over F alpha. So, in particular sigma alpha is alpha.  

So, we restrict to K. So, this means sigma restricted to K is a function from K to K, because 

K over F is normal. So apriori sigma is a function from K alpha to K alpha, which fixes F 

alpha, and it fixes alpha. And then, you fix K in this. So, sigma restricted to K apriori will 

land in K alpha; because K is normal, its image is again in K. So, it is an automorphism. 

So, sigma restricted to K is an automorphism of K over F; of course, sigma restricted to 

F is identity. Because, sigma restricted to F alpha is identity. So now, we get a group of 

homomorphism from Galois K alpha over F alpha to Galois K over F, sending sigma to 

sigma restricted to K. This is the function. So, you take an automorphism of K alpha, you 

restrict it to K. 

So, phi is certainly a group homomorphism, because, I mean, you check this, because phi of 

C circle tau is sigma phi of sigma circle tau is sigma circle K sigma restricted to K circle tau 

restricted to K, but restrictions are really be the same thing. You are just taking elements from 

K. So, this is a group homomorphism is easy exercise. It is also easy to show that, it is 1 

1. Because suppose, sigma K is identity, sigma restricted to K is identity.  

We also know that, sigma alpha is alpha. So, that means sigma is identity on entire K alpha 

because it fixes alpha by definition, because it is an automorphism of K alpha, which fixes F 

alpha. So, it means it fixes alpha. On other hand, if image of phi is identity that means sigma 

restricted to K is identity. So now, what are elements of K alpha.  

They are polynomials in alpha with coefficients in K. Every coefficient is fixed, because of 

this, alpha itself is fixed, so sigma is identity. So, sigma is an injective group homomorphism,  



from Galois K alpha over F alpha to Galois K over F. That means, this is a subgroup of this. 

This is cyclic by hypothesis. So, this must be cyclic. Subgroup of a cyclic group is cyclic.  

Strictly speaking, this is isomorphic to subgroup of this. This is cyclic. So this cyclic, not 

only that, because this is isomorphic subgroup of this, order of the Galois group of K alpha 

over F alpha divides order of Galois group over F, but order of Galois K alpha over F 

alpha divides order of Galois K over F. But this is K alpha colon F alpha, and this is K colon 

F; because both are Galois extensions. 

So, this is done. So this proves this. This is a useful statement that we will use all the time in 

rest of the course. And I also want to remark finally about this proposition; phi is need not be, 

need not be in general onto. For example, you can take alpha to be in F, alpha to be in K. So, 

if you take alpha to be in K, K Alpha is equal to K; but F alpha could be strictly bigger. So, 

this will be smaller than this. So, all we know is that, this is a subgroup of that. 
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Now, I will come back to the theorem that I started with. Proof of the theorem that I stated at 

the beginning of this class, so if you have a Galois extension of degree 6, sorry; K colon F 

here, if you have a Galois extension of degree 6. I want to show that, it is solvable. So, what 

do I do? So, K over F is degree 6 extension. Let us take the Galois group to be G, and we 

know, because the given extension is Galois, we have degree 6, order of G is 6.  

So, let us take the following. So what we have is, we know this is irrelevant. But what we 

know is that, G is either Z mod 6Z; or G is S6, S3. Because that, those are the only 2 groups 

of isomorphism, which have order 6. In either case, what I said is this, it is irrelevant, which 

one it is. In either case, G has a normal subgroup of order 3. In the case of the cyclic group, it 

is abelian. So, every group is normal.  



So, you take an order 3 subgroups, cyclic group. In S3 also there is an order 3 subgroups, 

generated by 3 cycles; for example, generated by the 3 cycle. So, there is an order 3 

subgroup, H. Then H is normal in G. Since it is a index 2 subgroup. I mean, you do not need 

the general result. You can make do with the specific statement, that in the case of Z mod 6Z, 

every group is abelian, subgroup is abelian.  

In the case of S3, the order 3 subgroup is abelian; one can check directly. So now, we apply 

main theorem. So, we have K K power H and F. So, main theorem of Galois theory, I mean. 

So, we have this. And what are the degrees of these? So let us call this L, because the order of 

the group is 3, that is 3. Because index of the group is 2, this is 2. So now, in this I am going 

to assume the characteristic is different from 2.  

As I said, our primary case is, characteristic is 0, but some of these results are generally true. 

So, we know K, L over F is simple radical. This is simple radical, because its degree 2, and F 

has characteristic different from 2. Any degree 2 extension of a field, which is of 

characteristic different from 2, is simple radical. It is obtained by a degree, adding a square 

root. But now, what about K over L?  

So, we will analyse K over L here. We know that, K over L is Galois. This is the usual 

statement. It is the trivial statement; if K over F is Galois, K over L will be Galois, for 

any intermediate field with Galois group, because the only group of order 3 is a cycling group 

of order 3. So Galois group of K over L is Z mod 3Z. So now, this is the tricky thing, this is 

important. So what we do now is important.  

So, pay close attention to this, because we use this idea essentially to prove our 

next theorem. So, this is a simple example of what I want to do in the general theorem, that I 

will do next. If we knew, K over L is a Kummer extension, then K over L is a radical 

extension, and we are done. If it was a Kummer extension, we know that, it will be generated 

by a radical over L. So, but what stops it from being a Kummer extension?  

But for, K over L to be a Kummer extension, it is a degree 3 extension. So for, it to 

be a Kummer extension; L must contain a primitive third root of unity. But in general, it may 

not. Say, we are working with an arbitrary field extension, K over F. So, and we 

constructed L along the way. So, there is absolutely no reason to think that, L will contain a 

cube root of unity.  



And, if it does not as our examples earlier show; and if you think about this example, the 

reason that, this fails to be simple radical, is because Q does not contain a primitive 4th root 

of unity. So here, if L does not contain a primitive third root of unity; we are in a problem. 

Because, we are faced with a problem, because then it will not be simple radical.  

However, remember our goal is to not show that, this is simple radical; our goal is to show 

that K over f is solvable. So, we are allowed to deviate from the given tower. We overcome 

this problem as follows. 
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So let us denote, omega be a primitive third root of unity in an extension of K. So again, let 

me draw the picture here. We have L F this is degree 2 this degree 3, and we have some large 

extension M, if you want, that contains omega. This M is relevant. All I need to know is that, 

there is a begin of extension that contains a primitive third root of unity. So, as I can see here, 

I want characteristic of F to be different from 3 also, in order to talk about primitive third 

roots of unity. So, this, I think, will hold in all other characteristics.  

So, we will assume characteristic of F is different from 2, and different from 3. So, we do 

have an extension, which contains a cube root of 3, now, I adjoin that to omega K; K omega, 

and same I adjoin to this. Now, by, so we do know that, K over L is Galois. In fact, K over L 

is Galois with cyclic Galois group. So, K over L is cyclic. Because K over L is Galois with 

Galois group Z mod 3Z, so it is cyclic. Now, this is the important thing. 

So, this is by the proposition. Proposition says that, if you have a cyclic extension; you attach 

an element to the bigger field, and same element to the smaller field; what you get is a cyclic 

extension. So this is a cyclic extension. And now, L omega does contain a primitive third root 

of unity by the very construction. So, K omega L omega is cyclic, and L omega contains 

omega. This implies, go back to the videos, where we did Kummer extension.  

This says that, K omega over L omega is a simple radical extension. So in that theorem, we 

did not necessarily use the word simple radical, but we did say that, it is generated by a single 

element; such that, the power of that is in L omega, so maybe, I will quickly show this to you. 

So, I do not remember how long ago it was. So, this is a Kummer extension. So maybe, this is 

good. So, let F be a field containing a primitive nth root of unity, K over F is an extension 

of degree n. Then, the following are equivalent. K over F is a cyclic extension, apply this.  

So, apply these to; I write this for now, but I will erase this. In our situation, apply this to K 

omega over F omega. That is a cyclic extension by the proposition. The base field does 

contain a primitive nth root of unity. So K over F; in this case, K omega over F omega is a 

Kummer extension, that means there is an a. Such that, K omega is a splitting field of X 

power n a; that means K is F adjoin nth root of a. So, we are done.  

So this is the result, that we will apply to conclude that, this is a simple radical extension. 

Now, K over L is not in general simple radical, but this is. So, this is simple radical. Now, we 

are done. So now, consider the following. So I am going to write it horizontally. So that it 



is. I save some space here. So, I have F over L L contained in L omega L omega contained in 

K omega. Now, each of these extensions is simple radical, I claim.  

This is degree 2, so simple radical. This is simple radical, because omega power 3 is in L. It 

is generated by an nth root of unity. So, this is a cyclotomic extension. So, it is simple radical, 

and this is simple radical by the argument, that I just gave you. So, this is simple radical. So 

now, and we note now that K is contained in this. So that means, every element of K. So 

basically that means, K omega over F is a radical extension. 

Because, K omega. Remember, we are not saying that, K over F is a radical extension. This is 

an important point. We are only saying that, it is a solvable extension. So, K omega over F is 

radical extension. Because there are, there is a tower of simple radical extensions, ending 

with K omega. But, K is contained in a radical extension, so every element of K.  

So hence, every element of K is solvable over F, because every element of K is in a solvable 

extension of F, is in a radical extension of F. So, let me show the definition, I gave in the last 

class. So, an element is solvable, if it is contained in radical extension. So here, every element 

of K is contained in K omega, which is a radical extension of F. So, every element of K is 

solvable over F, and hence so is K.  

So, this completes the proof of the theorem, which we started with today. That K over F is a 

Galois extension of degree 6; that means, K over F is solvable. I may have a sort of; So, I can 

see that, this is wrong; it is not necessarily radical, it is solvable. So, it need be radical in 

general. So however, it is solvable, as we showed here.  

So, this idea that, we can extend our. So, this is a crucial step to go from a given extension 

with cyclic Galois extension, cyclic Galois group to something like this, by adjoining any 

roots of unity, that may require it to get a simple radical extension. So using this idea, we are 

going to show later, that we can prove, that radical extensions are essentially 

cyclic extensions.  

So, let me end this video by more, stating a more general result, that comes out essentially 

from the same proof, is the following. Let K over F be a cyclic extension. Then K over F is 

solvable. What is a proof? The proof is very simple. So, assume here that 

important, that assume characteristic is 0. Because I mean, I can generalise this by 



saying that, characteristic does not divide the degree. But I do not want to get into such 

technicalities. So, assume characteristic is 0. So, the same picture. 

So, let us say, n equal to the degree of this extension. So, let zeta be a primitive nth root of 

unity in an extension field of K. So then, we have. So, we have some L contain in K contain 

in F zeta is here. Then I take K zeta F zeta. L will go away now. L is only required to 

construct a nth root of unity. So, this is cyclic by assumption. So, K over F is cyclic. By the 

proposition, I proved in today's class. K zeta over F zeta is cyclic also.  

And the base contains a primitive nth root of unity. So, this is simple radical. So, the tower of 

simple radical extensions, that we going to consider now, is F adjoin F zeta contained in K 

zeta. So, this is a cyclotomic extension implies simple radical. This is simple 

radical, because it is Kummer. And K is contained in this. So, every element of K is 

contained in a radical extension.  

So, this basically implies that, K zeta over F is radical. So, every cyclic extension is solvable. 

This is something that we will do. We will use, essentially this is the crucial idea in the proof 

of the next theorem. But let me stop this class here today. In the next class, we will discuss 

more properties of radical extensions. Thank you. 

 


