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Welcome back. we are proving certain theorems about Kummer extensions. These are 

extensions which adjoin an nth root to a field that already contains a primitive nth root of 

unity. And so far we have proved that a Kummer extension is a cyclic extension meaning a 

Galois extension, whose Galois group is cyclic. 

And today we are going to prove that a cyclic extension is a Kummer extension. So, if F is a 

field containing a primitive nth root of unity and you have a cyclic extension of degree equal 

to n, then K is the splitting field of an irreducible polynomial of the form X power n minus a, 

which is to say that it is a Kummer extension. So, we just started the proof last time. So, let 

me continue now. 
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So, let us say G is the Galois group of that extension and zeta is a primitive nth root of unity 

in F. So, since G is n, order of G is n and G is cyclic, we do know that there is a generator 

which will be of course of order n, So, let us take sigma in generator G. Then we have 1, 

sigma, sigma square, sigma power n minus 1 are all distinct F automorphisms of K. In fact, 

they are all the automorphisms of K, F automorphisms of K, because G is exactly those 

powers of sigma. 

So, now, way back we proved that any collection of distinct characters is independent. So, by 

our earlier results on independence of characters, so I am going to use that now. We have 

used this, of course, to set up Galois theory now we are going to use this directly again by our 

earlier results on independence of characters 1, sigma 2, sigma power n minus 1 are 

independent as functions from K to K independent over F. 

So, that means, in particular, 1 plus zeta sigma, zeta square sigma square is not identically 0 

as a function on K. Because zeta, I mean, independence means non-trivial linear combination 

is 0, so zeta, of course, I mean you take 1 times 1, zeta times sigma and so on. So, this is a 

nonzero function, that means there exists a nonzero element beta in K such that this function 

applied to beta is nonzero. So, alpha which is defined to be beta, 1 of beta is beta because 1 is 

the identity function, zeta sigma beta, zeta square sigma square beta, zeta n minus 1 sigma 

power n minus 1 beta is alpha is nonzero. 

So, it is not an identically zero function. That means, on some element in the domain it is 

nonzero. So, take a beta on which it is nonzero and let us call the image alpha, so alpha is a 

nonzero element of K. Now, let us apply sigma to alpha, then we are going to get a bunch of 

questions like this. So, let us apply sigma to alpha, alpha sigma is a homomorphism, and zeta 



is fixed by sigma so I am going to write sigma square beta because sigma of sigma beta, 

sigma square beta, plus zeta square sigma cubed beta, all the way up to zeta n minus 1 sigma 

power n beta. 

But what is sigma power n? So, I am going to write that here, sigma power n is identity. 

Because sigma is the generator of this group which has order n. So, this implies sigma alpha 

is sigma beta plus sigma square beta, zeta square sigma cubed beta, all the way up to zeta n 

minus 1 beta, because that sigma n beta is beta. So, now continuing this further, what we get 

is, and also note that zeta is an order n element also. 

So, zeta power n minus 1 is another name for zeta inverse, this is because zeta n is identity, so 

zeta n minus 1 zeta is 1, that means zeta inverse is zeta n minus 1. Because zeta n minus 1 

times zeta is 1 means, zeta n minus 1 is the inverse of zeta. So we can rewrite this as zeta 

inverse beta. So, now I am going to skip a step here. So, sigma alpha is equal to zeta inverse 

times zeta sigma beta, zeta square sigma square beta, zeta cubed sigma cubed beta, the 

previous term will be zeta n minus, so maybe I will write that here. 

The previous term here is zeta n minus 2, sigma n minus 1 beta plus zeta n minus 1 beta, that 

was the previous talk. So, now I am factoring out zeta inverse. So, this will become zeta n 

minus 1, sigma n minus 1 beta plus beta. Zeta n minus 1 is just a scalar because it is in the 

base field, so I am pulling that out. So, you factor zeta inverse out, so zeta inverse which is of 

course, zeta power n minus 1, out. 

So, here of course there is nothing, so it will be zeta inverse zeta. So, there must be, you have 

to increase the exponent of zeta in each place. So, zeta here, zeta square here. zeta cubed 

here, zeta n minus 1 here, and zeta power n here, that is 1. So, for this, if you just stare at this 

is, so let us see, what is this? 

This first term is beta, I am going to put that here, this is exactly equal to alpha, because beta 

plus zeta sigma beta, zeta square sigma square beta, zeta cubed sigma cube beta, zeta n minus 

1 sigma n minus 1 beta. So, this beta if you put here is exactly like alpha. So, this concludes 

the proof that sigma alpha is zeta inverse alpha, this is going to be used by us in a minute. So, 

this is a pure calculation, so there is nothing deep here and I hope the calculation is clear to 

you. So, sigma alpha is zeta inverse alpha. 
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Remember, our goal is to prove that K over F is a Kummer extension, that means K must be 

obtained by adding an nth root, I claim that alpha itself is that nth root, which is to say alpha 

power n is an F. The proof is clear, it is a one-line proof. So, the proof is that sigma of alpha 

power n is, of course, sigma alpha power n this is because sigma is an automorphism, but 

sigma alpha power n is zeta inverse alpha power n because sigma alpha is zeta inverse alpha, 

but zeta inverse is an nth root of unity. So, zeta inverse power n is 1. So, this is just alpha 

power n. 

This means sigma alpha n is alpha n, this means alpha n, so this of course implies that sigma 

power i of alpha power n is alpha power n, for all i. So, alpha power n is in the fixed field of 

G because every element of G which is of the form, G is exactly 1 sigma, sigma square, 

sigma n minus 1, each of them fixes alpha. So, each of them fixes alpha power n. So, sigma 

power n is in K G, but K G is of course F, this is because K over F is Galois. So, K G is F, so 

that means alpha power n is in F, so that proves the claim. So, now we are going to take, let a 

be alpha power n which is an F. 

So then, the first point is, K is the splitting field of, and the reason for that is clear because 

roots of X power n minus a in K are alpha, zeta alpha, zeta square alpha, zeta n minus 1 alpha 

and K is generated by them. K of course is, I mean, so remember what is the alpha that we 

have? So, I am going to prove this in a minute, but I think we should prove that F alpha is the 

splitting field. So, maybe I should write that here. F alpha is the splitting field of X power n 

minus a, this is the first statement, this is easy of course. 
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So, let me prove this carefully. So, F alpha is a splitting field of X power n minus a, this is 

because X power n minus a split completely over F alpha, this is because all the n roots of X 

power n minus a are in F alpha, namely. What are the n roots? Alpha is one of them because 

alpha power n equals a, which is alpha power n. Then zeta alpha power n is also a zeta square 

alpha power n is a. 

Similarly, if zeta power n minus 1 alpha power n is a. This implies the roots are alpha, zeta 

alpha, zeta square alpha all the way up to zeta n minus 1 alpha, there are n of them. So, all the 

roots are there, it splits completely. And of course, F alpha is generated by alpha over F. So, 

F alpha is a splitting field. Now, we claim, second statement is that F, which is X power n 

minus a, is irreducible over F, second statement is this and then that will tie up everything. 

So, why is this irreducible? And the reason is the following. 



So, note that sigma alpha is that I have showed earlier. So sigma alpha is zeta inverse alpha. 

So, this is what we have, and then this tells me that sigma square alpha, maybe I will write it 

here. So, sigma square alpha is sigma of alpha, which is zeta inverse alpha, which is zeta 

inverse sigma alpha, which is zeta inverse alpha, so that is zeta power minus 2 alpha. So, 

similarly, sigma power i alpha is for all i, so sigma i alpha is that. Now, sigma power. 
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So, our situation is this, K is an extension of F alpha. And that is an extension of F. So, sigma 

is an automorphism of K, and sigma i sends alpha to zeta power minus i alpha which is an F 

alpha. So, each sigma i restricts to an automorphism of F alpha, because it image is contained 

again in F alpha. So, this implies sigma i of F alpha is contained in F alpha. Because once 

alpha has image in F alpha, capital F it is fixed. 



So, for every polynomial in alpha with F coefficients, its image under sigma power i is again 

in F alpha. So, it is restriction automorphism, once it is contained in this because F alpha is an 

algebraic extension image is F alpha. So, it is an automorphism of F alpha. And moreover, 

sigma i is not equal to sigma j, for i not equal to j. Indeed, suppose sigma if alpha is sigma j 

of alpha, if they are identical automorphisms of F alpha, that means that they agree on alpha. 

But that means, because sigma i alpha is zeta power minus i alpha, and sigma j alpha is zeta 

power minus j alpha, this implies. And here, of course, we are only taking i between i greater 

than equal to 0 but strictly less than n. But if zeta power minus i is equal to zeta power minus 

j, this will guarantee that i equal to j. So, this is the proof of this. If i and j are different, sigma 

power i cannot be equal to sigma power j. I mean, this is another way of saying that sigma 

has order n, as automorphism of K. 

Because alpha separates powers of sigma, they are distinct as automorphisms of F alpha also. 

So, hence, we are almost done now. The Galois group of F alpha over F has at least n 

elements because each sigma power i, so the point is, each sigma power i is in the Galois 

group of F alpha over F. So, that is the first statement here because it restricts automorphisms 

and the second statement is that they are all distinct. 

So, there are at least n automorphisms in the Galois group of F alpha over F. But this is equal 

to F alpha F, if you want, because this is a Galois extension. Because it is a splitting field of a 

separable polynomial. I mean, it is splitting filled up this polynomial which is separable by 

characteristic assumption. But this is less than or equal to K colon F, because F alpha is an 

intermediate field. 

So, this degree is less than this degree, but this is of course n is by hypothesis, so that is part 

of hypothesis and hence, everything here is 1 equal. So F alpha colon F is equal to n, this 

means F alpha is equal to K. So, I mean, the statement that X power n is irreducible, because 

if it is not irreducible then the degree of alpha over capital F, which is the extension degree is 

less than or equal to n, because alpha satisfies and if this is equal to n. 

So, if this is equal to n is what we have just shown and F alpha is 0, so I am sort of messing 

this up a little bit, but F alpha 0, F is, of course, X power n minus a. Then F alpha is 0, degree 

F is n and degree of the irreducible polynomial of alpha over F is n. So, that means F is the 

irreducible polynomial of alpha over capital F. That means, this is irreducible. 

So this completes the proof that, so let us go back to the original statement of theorem 2.
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If you are given a cyclic extension, we did prove that K is the splitting field off an irreducible 

polynomial this we just showed over the base field which is to say a cyclic implies Kummer, 

Kummer implies cyclic. And hence, this theorem is proved, the theorem, main theorem which 

is to say Kummer, if and only if, cyclic. So, this is saying that Kummer if and only if cyclic. 

So, I have a few minutes left in this class. So, let me just tie up some loose ends and prove or 

at least to start studying something which will help us when we talk about solving 

polynomials by radicals. 
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So, let me just give you a preview of what we are going to do later. So let us say F is a field 

and let us say K is sum ome extension of F, and alpha is in F. So, we will come back and give 

these definitions formally later. But I wanted to use Kummer extensions that we just studied 

so that this will be fresh in your mind to indicate what we will do later. 

So, we say that alpha is expressible by radicals over F if there exists a tower of field 

extensions. Let say F, which is F 0, then F 1, finally F R. So, in our usual way, this is F, F r 

minus 1, F 2, F 1, F 0 which is F. Such that a couple of things happen, one is that alpha is in F 

r. So, this K that I started with is irrelevant for this, K is just given so that we need to talk 

about some elements that are in an extension field, so otherwise, K is not important. 

And two, each extension F i over here F i minus 1 is a radical extension. That is F i equals F i 

minus 1 alpha i, so radical extension is one where it is obtained by adding a radical. So, what 

we are saying is that this is F zero alpha 1 and a power of alpha 1, alpha 1 is an n 1th route of 

F. So, F 2 will be, so maybe I will just use that here, F 1 alpha 2 where alpha 2 power n 2 is 

in F 1 and so on. So, all the way like that, and this will be F r minus 1 alpha r, where alpha rth 

power will be in the previous field. 

So, if you recall from the beginning, first-class in fact. In that language, alpha can be 

expressed using elements of F and addition, subtraction, multiplication, division and radicals. 

So, that means taking roots. Because alpha is in F r, so it can be written as a polynomial with 

F r minus 1 coefficient with polynomial alpha r. But alpha r is the root of something in F r 

minus 1. So, it becomes obviously very messy, but in principle you can do that. 
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For example, simple example, let us say you have Q, contained in Q root 2, containing Q root 

2 cube root of 5. So, anything here can be expressed in terms of radicals and rational 

functions. For example, cube root of 5, so any element of this can be expressed using the 

usual operations but radicals. So, the point is, you take this, I mean any functional element 

here will be something, some root 2, a plus root 2, b root 2 plus C times cube root of 5 plus d 

times cube root of 5 whole square, plus e times root 2 times cube root of 5, I mean it can be 

something complicated. 

I do not care how complicated it is, but it can be done is the point. So, the Galois theorem is 

used to show that roots of a quintic polynomial cannot be expressed like this. The main 

achievement of Galois theorem is that, there is a quintic polynomial whose roots cannot be 

expressed by radicals that means you cannot construct a tower of fields like this. 
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Let me quickly tell you how to connect this to Kummer extensions. If F contains primitive 

nth root of unity, then a radical extension is merely or simply a Kummer extension, so this is 

the important thing. So, remember radical extension, this is the crucial property that we are 

seeking in solvability of quintic. And Kummer extensions are like that, except that you need 

to have a primitive nth root of unity and a suitable radical extension, not any radical 

extension but a radical extension where you only adjoin nth roots. 

And Kummer, if and only if cyclic, assuming that F contains a primitive nth root. So, bas 

what I am really saying is that, this is in the realm of solving polynomials by radicals, this is 

something that mathematicians were trying to do 200 years before Galois. So, this is brute 

force expressions of roots. So, think of Kummer extensions, so maybe I will write down 

radical extensions if and only if Kummer extensions, I mean equivalent to Kummer 

extensions equivalent to cyclic extensions. 

So, this is our theorem today and this is if F contains primitive nth roots. So, this is not, in 

general, true, but this is in the realm of solving polynomials by radicals as in Galois’ time. 

And this is, of course, the same thing. So, this is like this, because if F contains primitive nth 

roots, but most of the time it will not, right, because Galois was interested in solving 

polynomials over Q, which will not contain, we will know how to address that later. 

So, this is the same as this, but this is not doing by brute force, but this is in the realm of 

group theory. So, this is much more conceptual and amenable to systematic study. So, now, 

the point of Galois is he translated the problem of messy formulas for roots which existed for 



cubic’s and cortex, and of course, quadratic formula also. And people are trying to see 

whether such a formula existed for quantic. 

That becomes very messy. And if you search online for cardinal’s formula, for cubic’s, and 

similar formulas for quadratics, they become extremely messy, and in fact, you do not know 

how to use them. And it was just hopeless to see if there is such a thing existed for quintic 

using such methods. Galois really translated the whole problem into a much more systematic 

and conceptual problem using group theory, and this is a crucial bridge, we converted 

Kummer extensions to cyclic extensions. 

And hence this theorem, today's theorem, or the theorem of the last two, three videos is hence 

very important for us it allows us to compare radical extensions to cyclic extensions. And 

modular these simple remains, this slight worry that we have that Kummer extensions are not 

just radical, but radical extensions where the base will contain primitive nth roots of unity. 

But that we will easily solve the problem. 
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So, we will see later that F is any extension, any field and K is an extension field and alpha is 

in K, alpha is expressible by radicals over F if and only if. So the definition is this, where 

there is a tower, so this means, I will write it here, so this condition 1 and I will write 

condition 2 here. But condition 1 is really saying that there is a tower like this, such that alpha 

is in the last one, such that each of them is a simple radical extension, meaning it is obtained 

by taking an nth root. 

As I said, that is messy and it is not easy to deal with such definition. Whereas, the second 

condition is, there is a tower of field, let us say F equals F 0 prime, F 1 prime, F K prime or F 

M prime such that alpha is in F M prime and each F i prime over F i minus 1 prime is a cyclic 

extension. So, basically this is condition 1 and this is condition 2. The condition 2 says, this 

very complicated looking tower is replaced by a very beautiful, simple and conceptual tower, 

where the last one contains alpha, as always, but this is nothing, it is not messy like what is 

the radical extension but it is simply a cyclic extension. 

So, now, it is not clear at all in this world, any information about the group that you have can 

say nothing about whether such a tower exists or not. Whereas, the group, any such tower has 

very strong restrictions on the group because. For example, if you take the Galois group of 

the extension FM prime over F, there is something called a composition series or there is a 

chain of subgroups, right, because there is a cyclic subgroup of G such that the quotient has 

such an expression. 

So, this is related to the notion of solvable groups. So, what I am trying to say here, is just an 

indication of what is to come, this is the traditional notion of solving by radicals. So, this is 

the traditional notion. Galois converted this into a group theoretic problem, this is the 



contribution of Galois. And then you can argue all of this we will do later, basically you can 

argue that S 5 is not solvable. 

And hence, it cannot any polynomial degree 5 polynomial, he constructed certain degree 5 

polynomials whose roots, if they can be solved by radicals, then there is a corresponding 

picture like this, which would imply that S 5 is solvable, but it is not. So, this is the crucial 

theorem that makes it work and this is a crucial data which connects Galois theory, which 

connects classical problem of solving by radicals into groups, problem in group theory. And 

all of his, I am saying it today because it is connected to Kummer extensions. 

So, this will be used, Kummer extensions will be used when we prove this. If F contains the 

final remark, let me, I have taken too much of your time already, but final remark I will make 

is that if F contains primitive roots of unity, I will not say which primitive, nth roots for 

various n, I mean, because it depends on what our degrees of these. If F contains primitive 

nth roots of unity, this equivalence, this already follows from our theorem on Kummer 

extensions. 

So, that is what I want to end today with. Basically if F contains primitive nth roots of unity, 

then radical extensions are nothing but Kummer extensions, and Kummer extensions are 

cyclic so you can just take the same thing at each stage, this is Kummer, so this is cyclic. But 

F may not contain primitive nth roots of unity. In fact, the most interesting case for S is when 

F is Q, which will not contain primitive nth roots of unity, except when n is 1 and 2. So, we 

will need to figure out what to do with that, but that is a simple trick that will solve that 

problem, and that is the place where we have to deal with cyclotomic extensions which we 

are going to do in the next video. 

So, the next next one or two videos will do cyclotomic extensions and after that, we will get 

to the business of the course, which is to show that quintic polynomials cannot be solved by 

radicals in general. So, let me stop today here, and then we will continue with cyclotomic 

extensions in the next class. Thank you. 


