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Welcome back, we are halfway through the proof of theorem 1, that I stated last time after 

defining the Kummer extensions. And our goal finally is to prove this main theorem about 

Kummer extensions, which say essentially that if you start with the kind of a field, which 

means it is a field containing a primitive nth root of unity, then a Kummer extension is really 

nothing but a cyclic extension. And equivalence is given with two theorems, and the first 

theorem is to show that Kummer extension is cyclic. So, we started with the Kummer 

extension we argued last time that it is definitely Galois. 



Now, we are going to show that it is Galois group is cyclic. So, I also told you that the roots 

of, so recall, the n distinct roots of X power n minus a and K are, so you pick any root that 

you want first, then you take that root times the primitive nth roots of unity that exist in K. 

So, the primitive nth roots of unity are in F, so they are in K. So, the n roots are given by this, 

they are all distinct because a polynomial is separable. Now, we are going to show that the 

Galois group is cyclic by exhibiting a cyclic group which contains the Galois group as a 

subgroup. 
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So, for this let us know the following. So, let us take the Galois group K over F and take an 

element of this. So, then we do know that alpha power n is a, so this means, sigma alpha over 

n is sigma alpha power n, which is sigma a. So, because a is in the base field, so a is fixed. 

So, this means sigma alpha is a root of X power n minus a. 

So, hence the conclusion is, for all sigma in the Galois group, sigma alpha is some zeta i for 

some i, because the roots are all in front of you here. The roots of the polynomial are here, 

sigma alpha is a root of that polynomial, so sigma alpha is 1 of them. So, now, this allows us 

to define a map from the Galois group to the cyclic group Z mod n Z. What do we do with 

this? This is a map phi, so phi send sigma 2. 

So, the notation here is, so I am going to try this. So, for sigma in G the Galois group let 

suppose, we know that sigma alpha is zeta power i times alpha, that zeta i, I will call, that i 

will depend on sigma, right. So, I will call that the exponent of zeta i sigma, so then I will 

simply send it to i sigma mod n. So, I have to be a little careful here because i sigma is an 

integer, so it is not in Z mod n Z a priori, but I can take its residue class modular n, then 

sigma will go to i sigma mod n. 

So, we will prove some things about this. Phi is well defined, first. We will show that it is an 

injective group homomorphism and thereby Galois group of K over F is a subgroup of that Z 

mod n Z is isomorphic to a subgroup of Z mod n Z and hence Galois group will be cyclic. So, 

why is this well-defined? The problem might occur, if you have zeta i alpha is equal to zeta j 

alpha for different i and j, then via phi I will send sigma to, if sigma alpha is this, then I will 

send to either i mod n or j mod n. 



So, I need to know that i and j are same mod n. So, suppose this happens, then we of course 

know that because sigma i minus j is equal to 1, so I can always multiply by sigma j alpha 

inverse. So, this is sigma i minus j 1. This will guarantee that i minus j is divisible by n. This 

part here is because zeta is a primitive nth root of unity, it is a primitive nth root of 1, because 

of that if sigma i minus j is 1, i minus j must be divisible by 1 because the order of zeta is 1. 

So, this implies order of zeta is 1, as an element of K cross. 

So, its order is 1 because it is a finite order element, zeta power n is 1 and nothing less than n 

will make zeta 1. That means, after n the next one we will make, that will make zeta power 

that equal to 1 is 2n, then 3n, then 4n and so on. So, nothing in between can have that 

property. So, zeta power anything is 1 implies that power must be divisible by n. So, this is a 

simple group theory here nothing more than that. 

That means, i is congruent to j modular n. So, if sigma alpha is zeta i alpha, which is also zeta 

power j alpha, then i is congruent to j mod n. So, sigma phi of sigma is well-defined. So, a 

priori you might write different integers. But when you look at the residue modular n you get 

the same answer. If you take Galois K over F to Z you will not get the same well-defined map 

because maybe n is 5 and then zeta power 7 equals zeta square alpha. 

So, where will you send sigma to, so if this is sigma alpha, sigma will go to either 7 or 2. So, 

if the target is integers, this is not a well-defined map. However, if the target is Z mod phi Z, 

7 bar equals 2 bar. So, there is no problem so I am just explaining too much perhaps, but this 

is a well-defined map. And that requires the fact that zeta is a primitive nth root unity. Second 

statement is phi is a group homomorphism, why is this? 

So, of course, this is a group, so this is a group homomorphism. And this is rather easy 

because, suppose sigma 1 of alpha is zeta i sigma 1 alpha, and let us say sigma 2 alpha is zeta 

i sigma 2 alpha. So, then what is sigma 1, sigma 2 of alpha? Sigma 1, sigma 2 of alpha which 

by composition. So, this is zeta i sigma 2 alpha, then you apply sigma to this, zeta i sigma 2 is 

a constant because that is in the base field. So, that comes out and then sigma 1 alpha is i 

sigma 1 alpha. 

So, this is sigma 1 alpha. So, zeta power i sigma 2 comes out and then you get this. But this is 

nothing but zeta i sigma 1 plus i sigma 2 alpha. Now, if you go back to the definition of phi, 

phi will send anything to you simply apply sigma to alpha and then see what is the exponent 

of zeta. So, to find the image of sigma 1 sigma 2 under phi, you look at the image of alpha 

under sigma 1 sigma 2. And that is, so basically this entire calculation shows that i sub sigma 



1 sigma 2 is i sigma 1 plus i sigma 2. So, maybe this is a bit confusing if you are seeing this 

for the first time. 

And I am going maybe a bit fast, but just pause the video there, its really nothing more than 

notation here this is not Galois theory, this is just keeping track of the notation. So, phi sigma 

1 sigma 2 is, you look at the image of sigma 1, sigma 2, and image of alpha sigma 1 sigma 2 

and look at the exponent, because that is a root of X power n minus a, it must be a power of 

zeta times alpha and that power is this. 

So, this is i sigma 1 plus i sigma 2. And by the well-defined, so I can take anything here, I 

mean any integer that has this property. So, of course, this is modular n, of course, because 

that is the group. So, this is a group homomorphism the operation of the left-hand side group 

is composition, the operation of the right-hand side group is addition. So, phi of sigma 1 

composite sigma 2 is phi sigma 1 plus phi sigma 2. So, this a group homomorphism. 
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Finally, phi is injective. Why is this? So, this is also easy, suppose, something is in the kernel 

that means, it is image is 0, which is the identity element of this, but this means, i sigma is 0, 

this means, sigma alpha is the 0th power of zeta times alpha. But that means sigma alpha is 

equal to alpha. Once sigma alpha is alpha, now, recall that K is F alpha. Because once you 

adjoin alpha, all the routes are already contained, so, the splitting field is generated by alpha. 

So, if sigma fixes alpha, so sigma of, if you want beta is equal to beta, for all beta in K. 

Because, of course, sigma fixes capital F, it fixes alpha, so it must fix every polynomial in 

alpha, that means sigma is identity element, so it is injective. So, that means, Galois group is 

isomorphic to a subgroup of Z mod n Z. Now, since Z mod n Z is cyclic, so is the Galois 

group. 

So, this proves the first statement of the theorem 1, K over F is a cyclic extension. Now, we 

will you get to the second statement, but we can conclude now, so K over F is cyclic. So, now 

next we have to prove, I will write it down. K colon F is, which is the Galois group because it 

is the Galois extension, the degree of the extension is same as the order of the Galois group, if 

and only if X power n minus a is irreducible. So this is what we want to show so now let us 

show this. 

So, K colon F equals n implies because K is F alpha. So, K column F is n means F alpha 

colon F is n. This means degree of g is n, where g is the irreducible polynomial of alpha over 

F. If you have a primitive extension like this generated by a single element, the degree of that 

extension is simply the degree of the irreducible polynomial of that primitive element. So, if 

g is irreducible polynomial, degree of g must be n. 



On the other hand, note that F alpha is 0, where F is our polynomial whose splitting field we 

have started with. So, f is X power n minus a, then F alpha is 0. So, g divides f, and degree g 

equals degree f equals n, F is already a degree n polynomial. That means, f is g is irreducible, 

in other words, it is irreducible over F. So, if K colon F is equal to n, then F must be 

irreducible, so F is this. Because the irreducible polynomial of alpha, whatever that is, must 

have degree n, F is a polynomial which has alpha as a root, so F better be the irreducible 

polynomial and of course, that means F is irreducible. 

On the other hand this is one direction. So I did not write this completely, I mean this, if the 

degree of the extension or the order of the Galois group is n, that is irreducible. Now, 

suppose, this is irreducible. This, of course, means that degree of, so this implies, this is what 

I am assuming. But note that the order of the Galois group is less than or equal to and, this is 

because the Galois group is contained in the group Z mod n Z and this has order n. 

So, if you have this order n, as a subgroup this will have order at most n. Now this implies, so 

the degree of the extension, which of course is the Galois group order because the extension 

is Galois, is less than equal to n. On the other hand, K colon F is F alpha colon F, so is what 

am i assuming, it is irreducible, so it is equal to n. So, I did not need to do all this, because 

what is the irreducible polynomial, X power n minus a hat is irreducible by hypothesis and 

alpha is a root. 

So, F is irreducible and alpha is a root of f, and hence, so this follows, so this entire thing here 

implies this. So, K colon F is equal to n, which is what we wanted to prove, so I did not really 

need this. Those are of course, correct segments, but I do not need any of those directly we 

can argue this because X power n minus a is irreducible, so that is a polynomial whose root is 

alpha. So, the irreducible polynomial must be that and hence the degrees n. So, this completes 

the proof of, this proves theorem 1 and hence it proves the one direction of theorem main 

theorem. So, this is the main theorem. 
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Remember 1 implies 2 is theorem 1, so this completes the proof of the first part, which says 

that if you have a Kummer extension, then it is a cyclic extension. So, basically think of this, 

there is a lot of stuff here, but think of theorem 1 as Kummer implies cyclic and think of 

theorem 2 as cyclic implies Kummer. This is just a short way to remember but remember also 

that it is not an I mean, it is there is a lot of additional hypothesis here that F is a field 

containing a primitive nth root and so on. 

So, if you remember all that, a convenient way of remembering theorem 1 is, Kummer 

implies cyclic and convenient way of remembering theorem 2 is cyclic implies Kummer. So, 

we now proved Kummer implies cyclic and theorem is that Kummer if and only if cyclic. So, 

we are done with 1st theorem. Theorem 1 has a little more data than just Kummer imply 

cyclic, but that is a crucial thing for us. So, I wanted to highlight that. 

Now, let us go ahead and start the proof of theorem 2. 
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So, theorem 2, I will write down just for, so that I do not need to go back to that slide, F and n 

as above that means, n is a positive integer, F is a field with the characteristic assumption star 

and that F contains primitive nth root of unity, K over F is a cyclic extension. So, that is a 

part of hypothesis K over F is a cyclic extension, then the statement is K is the splitting field 

of, so then K is a splitting field of an irreducible polynomial X power n minus a over F. So, 

of course, a is an F. 

So this is the statement. So, this of course, as I said is saying that cyclic implies Kummer. So, 

these things will in fact be useful for us later, these are not just of intrinsic interest, which 

they are, but they will be useful to us later also. So, let me start the proof, I may not have time 

to finish it in this class, but I will prove for some time and then we will stop. So, let us see. 

So, let me start the proof and then see how much we can do. 

So, let G be the Galois group. So, note that K over F is Galois is by assumption and G is 

cyclic. So, that is the assumption that it is a cyclic extension. So, now, our goal is to produce 

a small a in capital F, whose nth root will generate K. So, let us also fix a primitive nth root 

of unity in F, because F contains an nth root of unity, I will just take one of them. So, let me 

maybe, I am not sure I can finish the proof in 10 minutes. So, I am going to stop this class 

here and then, we will use the next class to prove this theorem. Thank you. 


