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Welcome back. In the last video we did some problems. In fact, we had several problems 

sessions in the last few videos. And before that we proved the main theorem of Galois 

Theory, which was proved after developing the basic notions in Galois Theory and proving 

some preliminary results. So, we are now in the final stretch of the course. 

And our goal now is to prove the famous insolubility of quintics by radicals, which was the 

original motivation for Galois. So, I want to head towards that. But on the way we want to 

discuss a couple of interesting topics, which are interesting on their own. And also they are 

critical for our study of polynomial equations solving by radicals. 
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And the first topic, which I will start today is something about Kummer extensions. So, these 

are very interesting extensions that will play a role in later when we look at solving 

polynomials by radicals. So, let us set up the notation for this. So, let n be a positive integer, 

so I am going to now work with fields which have a certain property. 

Now, I am not interested in all fields. So, let F be a field such that either characteristic of F is 

0, in which case we have no further condition. Or characteristic of F is greater than 0, let us 

say p, then of course p is a prime number, in which case we want p not to divide n. So, we do 



allow positive characteristic fields, but then we do not want the characteristic to divide n, So, 

we will fix such a field. 

So, let me quickly define what is a primitive nth root of unity, I have been using that phrase 

repeatedly in the course and we will study them in more detail in the next topic. But for now, 

let me just say that an element zeta in an extension field of F is called primitive nth root of 

unity. So, we will study this in more detail in a couple of videos, but for me, now, I will just 

define it in the following way, this is one of the equivalent definitions. 

So, the primitive nth root of unity is 1 which is of course the root of unity if zeta power n is 1, 

of course, and no smaller power is 1 for any i, you take any positivity is a strictly less than n, 

zeta i is not equal to 1. So, this is, n is the first power of zeta which becomes 1. So, as an 

example, primitive first root of unity is 1, So, primitive first root of unity is 1 in any field that 

will exist. So, here remember, I said in an extension K over F, because F itself may not 

contain it but an extension field will contain it. So, I wanted to be precise and say that it is an 

extension of F. 

What are primitive second root of unity? So, this of course is, there is only one such, minus 1. 

So, because there are two, so second root is just another word for square root. There are 2 

square roots, potentially 2 square roots 1 minus 1. And of course, these will be different if the 

characteristic does not divide 2 which I am assuming. So, the point is, every time I talk about 

primitive nth root of unity, I assume the characteristic is not divisible by p. 

So, just to emphasize this further. When we talk about primitive nth root of unity in a field K, 

we assume K satisfies one of these two conditions. So, either characteristic K is 0 or n is not 

divisible by the characteristic of K. So, this is a standing assumption I am going to make. 

Now, there are two square roots in one you assume that of 1, and only one of them is 

primitive. So, this is primitive, this is not primitive because 1 actually a first root of unity, 

and so on. So, now, what primitive cube roots of unity for example in C are, primitive cube 

root or 3rd root of unity in C are omega and omega square, there are three cube roots of unity 

one omega, omega square, out of which only two are primitive. 

What about primitive cube root of unity in F7? So, these I claim are 2 and 4. This came up in 

the earlier video, so 2 cubed is 7, which is 1 mod 7. Similarly, 4 cubed is 64 which is also, 1 

mod 7, so F7 has three roots of unity 1, 2, and 4, only two of them are primitive. So, this is a 

primitive nth root of unity. Of course, a given field may not contain it for example, rational 



numbers do not contain primitive cube roots of unity, real numbers do not contain primitive 

cube roots of unity. 
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Now, let us define the notion of Kummer extension. Let F be a field containing a primitive 

nth root of unity. So, I will not repeat this all the time, but there is a standing assumption 

here. So, there is standing assumption, which is to say that every time you talk about a field 

containing a primitive nth root of unity, its characteristic is either zero or its characteristic 

does not divide n. 

So, in fact, you can argue that if you properly, rigorously defined primitive nth root of unity, 

a field containing a primitive nth root of unity must have this property but for now, I do not 

want to get into that. So, I will make that an assumption. So, note, F satisfies star. As I said, I 

will talk about primitive nth roots of unity later, this is one way to define it and other ways 

that the set of nth roots of unity in a field for this cyclic subgroup of the multiplicative group 

of nonzero elements of that field and primitive nth roots of unity of generators of that group. 

So, I will come back to that in the lectures when we talk about cyclotomic fields. Now, let us 

get back to the definition. So, you have a field containing a primitive nth root of entity, that is 

an assumption. A Kummer extension of F, so that is an extension K over F, such that K is the 

splitting field of a polynomial, so let me even say reducible polynomial, that comes for free in 

some sense. Here is an extension, I will write them such that K over F is n and K is the 

splitting field of an irreducible polynomial of the form X power n minus a, for some a in F, so 

these are Kummer extensions. 



So, Kummer extension, remember, is a base must contain a primitive nth root of unity and the 

extension must be of degree n and it must be obtained by adding an nth root. So, we say K is 

obtained by adjoining an nth root. So, we say that K is adjoined by adding an nth root, as we 

will explain. Because a root of this polynomial is an nth root of a. So, a is an F, so we 

adjoined an nth root to get that field, so then it is Kummer extension. 
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So, let us quickly look at some examples and our goal in this class is to understand Kummer 

extensions. So, of course, you can take F to be Q and n to be 2. So, then F contains minus 1, 

which is the primitive square root of unity. So, that part of the assumption is satisfied, 

because minus 1 is the primitive nth root of unity, second root of unity. So, then what are you 

looking for? 

A Kummer Extension has to be of the form, is simply a quadratic extension, let us say Q 

adjoined root d over Q, where d, you can take d for example. So, in fact, one can prove that 

every Kummer extension is like this, this is something we did in a problem session. So, it is a 

quadratic extension like this where d and root d is not in Q. If root is in Q, of course, this is 

not a quadratic extension. 

So, quadratic means degree 2 extension. So, a Kummer extension is simply a quadratic 

extension because you can always, I mean, then X square minus d is irreducible. You are 

adding a square root that is first example. On the other hand, if you take cube root of 2 is not 

a Kummer extension, though it is obtained by adding a cube root it is adjoining a cube root 

but it is not a Kummer extension. 



Why? Because Q does not contain a primitive 3rd root of unity, the only 3rd roots of unity in 

complex numbers are omega and omega square, neither of them is in Q. So, this assumption 

here, that the field must contain a primitive nth root of entities not satisfied. So, this is not a 

Kummer extension. These are important extensions, such extensions are called radical 

extensions and they are important to us. 

Later, when we study solving polynomials by radicals, so I will come back to this later. So, 

these are preferably good extensions called radical extension. Radical extensions are those 

that are obtained by adjoining a radical or a root of some existing element. And when we talk 

about solving polynomials by radicals, we are looking to produce that, show that the root is 

contained in a radical extension, because then it will be expressed in terms of radicals. If you 

remember the first video of the course, where I motivated Galois Theory by explaining what 

solving polynomials by radicals is. 

Now, with all the knowledge that now we now have, it is tantamount to saying that the root is 

in a radical extension. It need not be a single radical extension like this, but it can be inside a 

field which is at the end of a series of radical extensions. So, all this will be explained in 

detail later. But for us, the order of business today is Kummer extensions and this is not a 

Kummer extension because it fails to have 3rd root of unity. 
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However, if you take Q adjoined cube root of 2 comma omega over omega is a Kummer 

extension. Because you have rectified this problem of the base field, not containing a 



primitive cube root of unity by adding that, and then you are taking a cube root, so, this is a 

Kummer extension. 

So, and finally, let me just give you a 3rd example, which I will write here, if you take K to 

be the splitting field of X cubed minus 2 over F7, this came up in a problem session. We also 

recall today that F7 does have a primitive cube root of one, namely two, also four. And now 

you are adding cube root of 2 to this extension. So, this is a Kummer extension, so here, of 

course, 3 is the n that we are interested in, p equals 7. Here the field characteristic does not 

divide. So, that is good also. So, this notation here for me means p does not divide n. 

So, the sentence short form is that p does not divide n. This refers to the fact that p divides n 

and when I put a bar that means it does not divide n. So, all the conditions are satisfied, I will 

simply write F7 contains 2 and 4, which are primitive 3rd roots of unity. Because 2 is not 

one, 2 square which is 4 is not 1, but 2 cubed is 1, this is in f7. And same thing you can check 

for 4, 4 is not 1, 4 square which is 16 is not one, but 4 cubed is 1 
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So, Kummer extensions are useful or interesting by themselves, as we will see in a minute, 

and further, they will be useful to us when we study for polynomial equations, so this will 

come up in a few videos. So, let me write down the theorem that I want to prove today, which 

completely characterizes Kummer extractions. 
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So, let F be a field containing a primitive nth root of unity. Let me repeat again, F satisfies 

our standing assumption, which I wrote at the beginning of today's class, which is that either 

characteristic of F is 0, or if the characteristic is not 0, then the characteristic does not divide 

n. So, we fix a positive integer n, return we talk about Kummer extensions, we fix a positive 

integer n. 

So, let K over F be an extension of degree n, so K colon F is 1. So, then the following are 

equivalent, TFAE remember, represent statement that the following are equivalent. So, the 

first is that K over F is a Kummer extension. So, in other words, there exists a in F such that 

X power n minus a is irreducible and K is the splitting field of that polynomial. This is the 

definition of a Kummer extension. So, Kummer extension is an extension of degree n and it is 

the splitting field of an irreducible polynomial X power n minus a. 

Second statement which is much more Galois theoretic or more in the flavour of what we 

want to do. What we do in this course is that K over F is a cyclic extension. Remember that 

cyclic means, that is K over F is Galois. Cyclic represents two facts, that K over F is Galois 

and the Galois group is cyclic. 

So, in particular what we are saying is that Kummer extensions are cyclic or Galois and 

Galois group is cyclic. And moreover, you give me any Galois extensions whose Galois 

group is cyclic, it is a Kummer extension. I want to emphasize again that we are assuming 

that F contains a primitive nth root of unity. So, we want to prove this, our goal is to prove 

this theorem and we will do this by essentially proving two different theorems, which give 

the two directions of this theorem. 
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So, the first theorem is the following. So, the way I wrote the proof is, break up the proof into 

two different theorems. The first theorem is the following, so theorem 1. So, the proof of this 

follows from the following two theorems. So, maybe I will write down those two theorems 

now and then we will prove them. So, theorem 1 is the following, I want to write down the 

full setup so that we have a record of this, when you just look at this theorem you know 

everything. 

Let F be a field containing primitive nth root of unity. Now, I will not write any more that it 

satisfies the standing assumption star, it does of course, that is given. Let a be a nonzero 

element in F, let K be the splitting field of X power n minus a over F. Then two things, one, 

X power n minus a is irreducible, so maybe I will write it here as I have here then K over F is 

a cyclic extension. 

So, this gives me the one-directional global theorem and the order of the Galois group is n if 

and only if X power n minus a is irreducible over F. So, this is on the face of it a slightly 

more general result than what we need. So, maybe before I start to prove I will also write 

theorem 2. So, that I have everything on one slide. So, then I can try to, so let n as above and 

let F be a field containing a primitive nth root of unity as above. 

So, capital F and n in this entire class will be standard notation, n is a positive integer, F is a 

field containing a primitive nth root of unity, either the characteristic of F is 0 or its 

characteristic does not divide n. So, then let K over F be a cyclic extension of degree n. So, 

this is the second statement here, K over F is a cyclic extension of degree n, then K is a 

splitting field of an irreducible polynomial over F. 



So, of course, that means a is in F, the polynomial is in F. So, now I can't show you the full 

slide in one screen, but to prove now 1 implies 2, we use theorem 1. So, basically what I am 

saying is 1 implies 2, by theorem 1 because you are assuming that K is a Kummer extension 

of F and then you are concluding that it is a cyclic extension. That is exactly 1 implies 2. And 

2 implies 1, in theorem 2, we are taking a cyclic extension and concluding that it is a 

Kummer extension, so by theorem 2. 

So, this is the way I want to break up the proof so that the different results that we are 

proving are clearer in your head. So, the global theorem about Kummer extensions is that, 

remember this as basically saying that if you start with a field containing a primitive nth root 

of unity, then an extension of that field is a Kummer extension if and only if it is a Galois 

extension with cyclic Galois group, that is all. So, now, maybe I will try to prove theorem 1 

today. And then we will postpone the next theorem to next class. 
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So, proof of theorem 1. So, what is the proof of theorem 1? Theorem 1 is right here. So, we 

are given that it is the splitting field of a polynomial of the form X power n minus a, and we 

are also given that F contains a primitive nth root of unity. And we are going to prove that it 

is a cyclic extension and that if the degree of the extension is n if and only if it is an 

irreducible, X power n minus a is an irreducible polynomial. So, now, let us start with the 

proof. 
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Let alpha in K be a root of X power n minus a, remember in the theorem, K is the splitting 

field of X power n minus a. So, X for n minus a contains all the roots of that polynomial. So, 

let us take 1 of them. So, if K equal to F, we are done because K over F is, of course, Galois 

and cyclic. So in fact, let me write cyclic, it is cyclic and Galois group is not, I mean the 

second statement does not quite apply because that we will come to in a minute, I mean, here 

we are taking X power 1 minus a basically. So if this is done, we are okay. 

So, we assume K is not equal to F and alpha is not in F, because K is generated by the roots 

of the polynomial, K is generated by the roots of the polynomial X power n minus a. So, if all 

the roots are in F, then K is equal to F, in which case we are done. So, we are assuming that 

there is a root that is not in F. And we are also given that F contains a primitive nth root of 

unity, let us take one of them. So, primitive nth root of 1 is zeta. 

So, now, observe that zeta power i alpha are the roots of f in K. In fact, are all the roots of 

because alpha power n equals a, that means zeta alpha which of course is in K, so alpha is in 

K, zeta is an F, so zeta alpha is in K. And this is zeta n, alpha n which will continue to be a 

because zeta n is 1. So, the roots of f are alpha, zeta alpha, zeta square alpha, zeta n minus 1 

alpha and there are n distinct ones. Because zeta is a primitive nth root of unity. 

And in fact, we know also, that this polynomial by the assumption of the characteristic of F is 

separable. So, actually we definitely know that K over F is a Galois extension, this is because 

K is normal since it is a splitting field of a polynomial over F, and alpha in K is separable 

over F. The last statement is because f which is X n minus 1 is separable by the standing 

assumption. 
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Namely, the characteristic is either 0 or the characteristic does not divide n, if the 

characteristic is nonzero, the f prime is nonzero. So, f prime is nonzero and is only 0 as the 

root because f prime is n x n minus 1. So, only root of F prime is 0, but 0 is certainly not a 

root of f. So, F and F prime have no common roots. So, I will just record that here, F prime is 

n x n minus 1 and it is not 0. 

So, 0 is the only root of f prime which is n 0 is not a root of f. So, 0 is not a root of F and 

hence F and F prime have no common roots, so it is separable. So, alpha is separable and 

hence, K which is F alpha is separable. So, this is a property of separable extensions. So, if 

alpha is separable every polynomial in alpha is separable, so this is a separable extension and 

it is normal. So, K over F is Galois, it remains to show that Galois group is cyclic. 

So, that is what remains to show and that is what I am now to going to show. Because 

remember, the first part of the theorem is to show that K over F is a cyclic extension, which is 

to say, it is Galois plus Galois group is cyclic, that it is Galois is clear so that we have just 

shown, So, next step is to show that the Galois group is cyclic. 

So, it is already 30 minutes. So, let us stop now and we will continue with the proof in the 

next video, and then we will also prove the second theorem. Thank you. 


