Introduction to Galois Theory
Professor Krishna Hanumanthu
Department of Mathematics
Chennai Mathematical Institute
Lecture No. 31

Problem Session - Part 9
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Welcome back. We are in the middle of doing one problem. And | wanted to do a separate video
for this particular example because it illustrates many of the beautiful things that Galois Theory
tells us. Okay, so let me continue just where | left last time, and then work out the Galois Theory
of this extension in complete detail. So we have this extension.
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So first claim that | want to make is K colon Q is 8. So | want to do this in detail, because once
you understand the calculations | do in this example, you can use this in many problems. And
these are sort of standard calculations that come up all the time. So K is by definition, root 2, root
3, root 5. So | am going to do this in the following way. So first do root 3 root 2, then do root 2,
then do Q. So the way of proving this is, of course, to prove that these are all 2. But we have

never really discussed why these are all 2.

We definitely know this has degree 2. That way, definitely not because root 2 is not in Q. And
root 2 satisfies a degree 2 polynomial Q, that is irreducible. So this is true. But why is this 2? So,
as | said, | am going to do this really from first principles and work out the details. So, Q
adjoined root 2 root 3 is of course Q adjoined root 2, then Q adjoined root 2. So, you can think of
this as an explanation of Q root 2 generated by root 3, and root 3 satisfies a degree 2 polynomial
over Q root 2, namely x square minus 3, which is in Qx, which is of course in Q root 2x also. So,
this to begin with is at most 2 is all we can say, to prove equality here. To prove equality in star,

we need to show root three is not in Q root 2.

So, it could very well be, right, unless you prove it, you cannot be sure about this. So, if root 3 is
in root 2, Q root 2, then this will be a degree 1 extension. So Q root 2, 3 Q root 2, root 3 will be
same Q root 2. So, why is this true? The proof of this is as follows. So, suppose, root 3 is in Q

root 2, we already know that Q root 2 is a Q vector space spanned by 1 and root 2. So, there will



be a, b rational numbers such that root 3 is equal to a plus b root 2. So, if a is zero, this implies
root 3 is equal to b root 2, this implies 3 equals to b square. So that means b square is 2 by 3, but
this is not possible because there is no rational number whose square is root 2 by 3. So because 2
by 3 square root is irrational. Similarly b is zero, this is more easy, root 3 is a in Q, this is not

possible.

This is my symbol for contradiction, okay. So, suppose AB is nonzero, the third case is a zero
then we are done b zero, we are done. So both of them are nonzero. Then square this to get 3
plus3 equals a square plus 2bsquare plus 2ab root 2, right. But this means root 2 equals 3 minus a
square minus 2 b square divided by 2 ab, which is in Q. So that is again a contradiction, right? So
this is a standard calculation that comes in the beginning of field theory. So this is just a way of

reminding you this calculation. So hence, this is 2, right. So this is 2, root 3 is not in root 2.

And another way of stating this is, root 3 is not in root 2means this is equivalent to saying that
root 3 and root 2 are linearly independent as elements of vector space over Q. Because if root 2
and root 3 are not linearly independent, you can write root 3 as a linear combination of 1 and root
2 okay.So that you can check, | mean, it is, in fact, root 2 times a. This is equivalent to this,
almost equivalent to this. So this way of raising this will also be useful later. Because that is
another way of showing that these are, this is a degree 2 extension, okay. This is degree 2, but
now the question is, why is this degree 2? Because, if this is degree 2, then the whole thing will
be degree 8.
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So, the last step is, why is K colon Q root 2 root 3 is 2? So as before, K colon Q root 2, root 3 is
less than or equal to 2, because K is generated over Q root 2 root 3 by root 5, and root 5 does
satisfy a degree 2 polynomial over that field, namelyx square minus 5. So the degree is at most 2,
and it is equal to 2if and only if root 5 is not in Q root 2, root 5. Because that means if it is not 2,
that means it is 1. If it is not 2, that means it is 1, but that means root 5 is already there. But
suppose root 5, so this is a cute argument, so please think, look at this carefully.

Suppose, so | am trying to show that root 5 is not there, but if root 5is in there, then we have that
Q root 5 is an intermediate field. So that means Q root 5 is an intermediate fields of this
extension, but by Main theorem of Galois Theory, we know already that there exists only to 2

trivial nontrivial but 4 altogetherintermediate fields of Q root 2 root 3 over Q, right.

So, what | am hiding under the carpet here is the Galois group of Q root 2, root 3 over Q is Z
naught 2 cross Z naught 2, because root 2 and root 3 are independent, you can send root 2 to any
of its conjugates independently of image of root 3, and there are 4 such automorphisms and they
are Q root 2, the 4 intermediate fields are Q root 2 root 3, Q root 2, Q root 3 and Q. So, clearly Q

root 5 cannot be equal to this.

So, Q root 5is one of them. Can it be equal to this?Cannot be for degree reasons right because Q

root 5 is a degree 2 extension this, whereas, this is a degree 4 extension as we just shown. So, it



cannot be this. Similarly, it cannot be,so, let me just write all of them and eliminate obviously,

whatever is not possible, okay. So, it cannot be this of course, again for degree reasons.

(Refer Slide Time: 09:05)
by wed o N/ 23:28 ,,)

W-g\)w\l! SV ! A / 3=z X A
Ly (7,8 onede |  JP
Mwwa'fsmj*{“ Beel S ‘:umdz bw=>ﬁz°j&y
" sbto pssbralisnil
Lo [ vmsle 22 b b T W
Wa w LN X
- & 4@(\&\&) \__/"
/@:@(&,Jﬂ 16 % | o e e oo alrendy ok

2\(3) i 3 ¢
\I\gé&(‘ﬁl\ﬁ’) :7 (Q(\\r * 3”"”‘3 Lf u\"-l@ﬁ D{ Qe /(Q
Y

)
0 g, OF &Lﬁ ﬂa
2 b )
é LD?JE) 8(&) ‘“j;” ’
Fee® Feol

T poes l@)-112°8 Lo [y

But can it be these? If Q root 5 is in Q root is equal to Q root 2, root 5 is in root 2 by exactly the
argument that is in blue here. If this equality holds implies root 5 is in Q root 2 and this leads to a
contradiction exactly as before, okay. The numbers will slightly change, but it is essentially the
same argument. So, this cannot happen. Similarly, if this happens, root 5 is in Q root 3 but that
leads to a contradiction exactly as before. So this cannot happen. So Q root 5 is not an
intermediate field of this extension. That means root 5 cannot be inside this. That means this
must be true. So this is also true. So this proves really concretely this proves K colon Q is 2

times2 times 2, which is 8.
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Okay, now what is the Galois group? Okay, now here is where we can explicitly list all the

L

known the automorphisms, possibly majorsof root 2 root 2 minus root 2, for root 3 it is root 3
and minus root 3 and for root 5, it is root 5 and minus root 5. And now, | want to make a remark
which | think I sort of glossed over in the earlier part of the course, is that clearly root 2 can go to
any of these two, but if you chose a particular value for image of root 2, we are not forced to
choose any particular value for root 3, because the root 2 root 3 root 5 are independent.

So, the important point here is, which I did not explicitly state before, root 2 root 3 root 5 are
linearly independent over Q. So, the proof of this essentially is contained in the previous slide,
you can prove this using the calculations on the previous slide. So, because root 2 root 3 root 5
are linearly independent. So, essentially we have proved that root 2 root 3 root 5, any two of
them are linearly independent, you can then prove that the three are linearly independent,
because if you can write root 5 as a linear combination of root 2 and root 3, root 5 is inside this

which is a contradiction.

So, now, hence, the image of possible root 2 root 3 and root 5 can be chosen independently of
each other. So, root 2 can be a sent to root 2 or minus root 2 no matter what you choose there,
root 3 can be separately chosen to be image can be root 3 or minus root 3, and no matter what
choice you made for root 2 and root 3, root 5 can go to either root 5 or minus root 5, this is

possible only if they are linearly independent.
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See, just for argument's sake, let us say root 2 and root 5 root 3 are not linearly independent, then

the choice of root 2 will determine the choice of root 3 because if root 3 is 5 times root 2, it is not
of course, but that is silly. But to just give you an idea of how the argument works. If you choose
alpha here, you have to choose 5 alpha, you cannot choose anything else, they are independent
means root 3 can be sent to any of the possible values of course, for other reasons, we know that
root 3 has only two possibilities, root 3 and minus root 3. So, that is the reason that we can

choose any of them.
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So, | want to remind you that similar reasoning is required in the case of Q adjoined omega and
cube root of 2,thatwe did in an earlier video. Because if omega goes to omega or omega square,
cube root of 2 goes to cube root of 2or cube root of 2 omega or cube root of 2 omega square. So,
we wrote six automorphisms, two for omega, two choices, three choices for cube root of 2 and
there are two times three equal to six choices and we said that the all these six are valid
automorphisms. But that is only true because the choice of omega does not determine the choice

of cube root of 2.S0 here it is important that omega and cube root of 2 are independent over Q.

And this is trivial to show because cube root of 2 is real omega is not real for example. So if a
times omega plus b times cube root of 2 is zero, omega can be written as a linear combination of
cube root of 2 which it cannot happen. So that is required. So, | wanted to highlight this because

I did not highlight this in the corresponding video.
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So, now with this understanding, let us write down what are all the possible automorphisms of K.
Okay, so | am going to write eight of them, because that is already clear to us, right? Because
root 2 has two choices, root 3 has two independent choices, root 5 has two independent choices.
There are total of eight choices then,2 times 2 times 2. And | am going to write all of them here.
And | am going to essentially write them in a way that is analogous to the case that I described in

this case. | mean, okay, | went too far back, like this.



So, the first one is the identity map. So, let me write it like this. Root 2 going to root 2, root 3
going to root 3, and root 5 going to root 5. That is one. So I will try to stick to all five, eight here.
So that is one, of course. The other is root 2 go into minus root 2, root 3 going to root 3, root 5
going to root 5, so this is sigma 1. The third one is root 2 going to root 2, root 3 going to minus
root 3, root 5 going to root 5. So this is sigma 2. The third generator will be fixing root 3 and root
2 but root 5 is changed. So this is sigma 3. And then you have sigma 1, sigma 2, which you can
check is root 2 going to minus root 2, root 3 going to minus root 3, root 5 going to root 3. So this
is sigma 1, sigma 2. Sigma 1, sigma 3 will be root 2 going to minus root 2, root 3 on two root 3,

root 5 going to minus root 5.

So this is sigma 1, sigma 3. Remember that once you determine the images of root 3, root 2, root
5, everything else in K image of everything else is determined because everything in K is a
rational polynomial in root 3, root 5. And root 2, root 3 will be root 2 going to root 2, root 3
going to minus root 3, root 5 going to minus root 5. So, you can check these compositions
trivially, right, because root 2 root 3 means first you send root 2 to root3, root 2 under sigma 3,
then root 2 will go to root 2. So that is fixed. Route 3 will go to root 3, and then it will go to
minus root 3, root 5 will go to minus root 5 and root 5. So this is that. And finally, everything is
interchanged here. This is sigma 1, sigma 2, sigma 3.

So these are the eight elements of the Galois group. So the Galois group. And as you can clearly
check, each of them is degree 2 element other than 1, right, because any of them, sigma i square
is one for all 1, right, and sigma I, sigma j square is 1 and sigma 1 sigma 2 sigma 3 square is 1,
So, this is an abelian group where every element as order 2 every non-identity. So this is Z
naught 2Z cross Z naught 2Z cross Z naught 2Z. And hence, this is a special example of the
problem.

General casewe are looking at. In this problem we are looking extensions K over Q where the
Galois group is Z naught 2Z cross Z naught 2Z cross Z naught 2Z. So, this is a special case of

that situation.
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Now, because of that, there are 16 intermediate fields that we know, all we need to do is what are
they? Okay, so there are 16 intermediate fields. So, the fields will be K, and they will be L1, L1,
up to L7; and there will be L1 prime, L2 prime to L7 prime, and then there will be Q. And there,
we do not know, the relations between the inclusions between L 1 prime and L2 prime and we do
know, however, that each of these L1 primes is contained in exactly three of them Li’s. But the
question now is, in the general case, all we can do is determine the number of intermediate

phase, but now we can ask what are they.
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Okay, so let me just start exploring that. For example, let us look at Li’s. These are fixed fields
of order 2 subgroups, right. These are fixed fields of order 2 subgroups of G, but that for
example we can take L to be K power the fixed field of, let us say sigma 1. So, this is simply, if

you go back to sigma 1 that fixes both root 3 and root 5. So, that is Q root 3 and root 5.

So there is a small required argument here, so why is this? Why is an equality? So, general
theory tells us that K colon, K power 1 comma sigma 1 is 2, because that is the order of the
group 1 comma sigma 1. So, on the other hand, root 3 and root 5 both belong to K colon.
Because sigma 1 fixes root 3 and sigma 1 also fixes root 5, so, root 3 and root 5 are in K power
this. So, Q adjoined root 3 root 5 is contained in this. So, the picture that we can draw now is K,

K power 1 comma sigma 1, Qadjoined root 3 root 5 and Q.

So, now by the general theory of Galois, this is degree 2, right, this is captured in the Main
theorem, for example. But we already know this is 4, that is a calculation that we did earlier. This
extension is degree 4. So, this better be 1, right. So that is the equality. This is 2 this is 4, this
whole thing is 8 so these two must be equal. So, this is that. And now we can quickly write for
example, K power 1 sigma 2 will be just go back and see what is sigma 2, it fixes root 2 and root
5, so this is root 2 root 5. And similarly, L3 will be K power 1 sigma 3, | am just choosing some
numbering, so this will be Q root 3 root 5.



Now, more interestingly what is L4? If that is 1 comma sigma 1 sigma 2, let us say. Sigma 1
sigma 2 fixes, root 5 for sure, but what else does it fix? So, sigma 1 sigma 2, so which is here. So
let us look at this sigma 1, sigma 2. Sigma 1, sigma 2 fixes root 5, does not fix root 2 root 3. By
that it fixes root 2 times, root 3. So, sigma 1 fixes sigma 1, sigma 2, root 2 times root 3 will be

minus root 2, minus root 3, so root 2 root 3.So, that means it is root 6 is fixed.

So, that is the thing root 6 is fixed. Again the same argument, Q adjoined root 3 root 6 is degree
4 over Q and so is this, so they are equal. L5 K power one comma sigma 1 sigma 3, let us say.
Sigma 1, sigma 3 fixes root three as well as root 10 now, root 2 times root 5. So, this is Q
adjoined root 3 root 10, and L6 is K adjoinedK power sigma 2, sigma 3. And sigma 2 sigma 3
fixes root 2 and the product of root 3 and root 5 so this. And finally L7, there are only seven in
this case, 1 comma sigma 1 sigma 2 sigma 3, what does this fix? It fixes all mutual products. So,
for example, it fixes root 6 and root 15. But root 10 | claim is already there, so | can else take
root or root 10 or root 6 and root 15 and root 10.

Why is this? Because see if you take root 6 times root 15, this is root 90 but that is 3 times root
10. So, root 10 is already here, because that is three time root 10 is there. Similarly, root 6 times
root 10 is root 60, which is 15 times 4. So, this is root 10 15. And similarly, root 10 times root 15
is root 150. And so that is in factor of 10, 5 root 6. So, so root 6 is here. Similarly, root 15 is
here, similarly root 10 is here. So, these are all equalities. So, these are the seven degree 4
extensions of Q that are intermediate.
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But what are the degree 2? So, before | continue to degree 2, let me ask about, what about root 2

plus root 3. One can check actually by brute calculation that can check because root 2 plus root 3
satisfies the degree 4 polynomial, it cannot be decreed 2 because again if it is a degree 2
extension it will be inside Q root 2 comma root 3. And this has only four intermediate fields,
clearly this is not Q and you can argue that this is not Q root 2 or root 3, because if this is equal
to Q root 3, let us say, this implies root 3 is in Q root 2, because once root 2 is there, root 2 plus

root 3is already there, so root 3 will be there. So, this is not equal.

So, | should not change this, so this cannot be equal. So, that is equal to this. So, this is Qroot 2
plus Qroot 3. So, this is in fact equal to okay. So, this is what is called a primitive extension. So,
this is a primitive or simple extension, meaning it is generated by a single element. Here it is
generated by two elements, but you can choose a suitable degree single element which generates
it. Similarly, you can check now, this is same as Q root 3 plus Q root 5 and so on. Okay, so, these
are primitive elements for these extensions. At the end of this example, I will also show that K

over Q itself is simple. So, now, this takes care of Li.
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What are Li primes? Okay, these are degree 2 extensions, right. So, these are fixed fields of, let
me write it like this, order 4 subgroups, right. So, we can write for example, L1 prime is K
power, so let me try to write down the way that | have in my notes, so it does not matter but |
will just write one of them. So, 1 sigma 1, sigma 2, sigma 1 sigma 2. See, already in the previous

video, we looked at the order 4 subgroups of Z not 2 cross Z not 2 cross Z not 2.

So, here, we want to look at things that are fixed by sigma 1, sigma 2 as well as sigma 1, sigma
2. So, sigma 1 fixes root 3 and root 5, but among this sigma 1 sigma 2 fixes root 5, right? Sigma
2 fixes root 5, so root 5 is the only one. So this, again, the argument is, why is this true? Root 5 is
in the fixed field, that is the fastest step. If you go back and look at the slide where | have all
these automorphisms written, you can see that sigma 1 fixes root 5, sigma 2 fixes root 5, sigma 1
sigma 2fixes root 5, so that is there. And the extension of this is degree 2, as well as this is

degree 2 because K over this is degree 4, right? So this is degree 2.

So that means these are equal. So this is an equality. So you can now write down all other, okay,
so | do not want to list them. This is just boring. You can write down on your own. You will get
2, you will get 3 of course, you will get the products of pairs of them, so you got 10, you get Q
root 10.You get 6, you get Q. Sorry, | keep writing this. So L5 prime will be Q root 6, and L6
prime will be Q root 15 and finally L7 prime will be Q root the product of all of them, so that is
30. You can argue that they are all distinct. Either using the Galois Theory that we of this



extension or you can directly argue that using the kind of argument we did earlier, to show that

root 2 is not in 2 root 3, you can argue that there are different.
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So the tree of intermediate fields will be Q adjoined root 2, root 3, root 5 and then you have Q
root 2, Q root 3, maybe | would not have place to write all of them. So what are the other things?
Root 5, root 6, root 3, 10; 2, 15. And finally, I will just try to squeeze that here, Q, so maybe
closer 1 will write. So Q root 3, root 5, Q root 2, root 15, | will take one of them and take the
productof the others, so root 10, Q root 5, root 6 and any two of them. So for example, the last
one is 6 and 15, right. So | have already written all seven of them. So, this is2, 2, 2 and of course
| have Q root 2, Q root 3, here | can write all of them, so Q root 6, Q root 10, Q root 15, Q root
30.

Okay, now you can actually fill the thing here. So it is contained in this, as well as this. This is
contained here, this becomes messy of course and then this is contained here. As we argued here,
there will be three arrows coming above each degree 2 extension, then you have Q, 2, 2, 2, 2, 2
and this is 2, 2, 2 and so on. So for example, root 10 will be contained in this, it will be contained
in this. And we argued that it is going to be contained in this.So, there will be three. Okay, so
you can fill in the other complete the. So these are all the 14 intermediate fields on this
extension. Okay, so | hope this gave you a clarity on what kind of information that you can hope

to get from Galois Theory.
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Okay, so finally, one last thing | want to do about this example. Finally, we claim K itself can be
generated by root 2 plus root 3 plus root 5.So this is also a primitive extension. So | want to
remark that it is possible that to prove this by brute force. Meaning, you can just calculate and
show that root 2 plus root 3 plus root 5 has degree 8 over Q, and then show that the field

generated by them, that element must be K,because K is a degree 8 extension.

But here is a beautiful simple argument using Galois Theory. And what is that argument? So, the
argument is the following. So, we note that none of the Galois group elements fix this, so note
is,sigma i of root 2 plus root 3 plus root 5 is not equal to root 2 plus root 3 plus root 5, for all i
from 1 to s7. For example, where will sigma 1 send this to?So, this is root 2 is interchanged, so
this is not root 2 plus root 3 plus root 5.

So, here, use the linear independence of root 2, root 3, root 5 over Q. So, this has to be used
repeatedly. So this is not equal. And you can see now that you take any of the other sigma i’s, let
me take sigma 1, sigma 3, then root 2 plus root 3 plus 5 will go to minus root 2 plus root 3 plus
minus root 5. So, clearly not equal. The last one will send it to minus root 2, minus root 3 minus
root 5, which cannot be equal to root 2 plus root 3 plus root 5, because they are linearly

independent, the only linear combination of them that is equal to this is when you have 1, 1, 1.
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Okay, that means, so now if you want you can look at if root 2. So suppose, so, | am trying to
just think of what is the best way to argue. So, suppose this is not equal to K, then Q root 2 plus
root 3 plus root 5 is equal to one of the other 15 intermediate fields. Let us call, in each of them
there will be a group element which will fix this that is a point. So, Q adjoined root 2 plus root 3
plus root 5. In fact, | do not need to know this. This can be done directly. | do not need to know

which of these intermediate fields it is.

So, is equal to K power H for a subgroup H of G, which is different from G or rather which is
different from identity. Because there is a bijective correspondence between intermediate fields
and subgroups, this is a proper intermediate field, meaning it is not equal to the entire field. So,
the corresponding group cannot be trivial group, because only group that corresponds to K is the
trivial group. So, if you have an intermediate field that is different from K, so if this is not equal
then the corresponding group H cannot be 1. But then sigma i belongs to H for some i, right

because GH is not equal to identity. So, that means, H contains sigma i for some i.

So, sigma a is an H which is not a trivial group, so it must contain a non-identity, that means it
must contain sigma 1, sigma 2, sigma 3, sigma 4, sigma 5, sigma 6or sigma 7. So, let us end
sigma i of root 2 plus root 3 plus root 5 is root 2 plus root 3 plus root 5, because sigma is in H
and root 2 plus root 3 plus root 5 is in the fixed field, | hope | have written 5 everywhere root 2



plus root 3 plus root 5 is in the fixed field of H. So, sigma i fixes this but this we just argued, is

not possible. So, root 2 plus root 3 plus root 5 is not fixed by any of the sigma i’s.

So, the group corresponding to Q adjoined root 2 plus root 3 plus root 5 must be the identity
group and hence, K is equal to root 2 plus root 3. So, | want to just ponder about this proof for a
minute. We have proved a fact which can be proved using brute force by messy and long
calculations, very cute argument using standard Galois Theory. So, this is a good illustration of

how Galois Theory can give you nice proofs and sometimes only proofs of nice facts.

So, here purely field theoretic statement that root 2 plus root 3 plus root 5 generate K over Q can
be proved using this Main theorem of Galois Theory. So, let me stop this video here. We have
done several videos containing lots and lots of problems. So, hopefully all these problems help
you understand the subject better. And you are ready now to proceed further in the course. And

we will do that in the next video when we start talking about Kummer extensions. Thank you.



