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Welcome back. In the last class we did a couple of more problems. So I wanted to do one more 

problem which is a very nice problem because it gives you a flavor of what Main theorem does 

and what really Galoistheory does in terms of explaining how a given field extension behaves. 

So we do this one problem and then we move on to the next topic in GaloisTheory.  
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So, this is the problem number, let me see, nine. Okay. So I want to do this problem in detail to 

understand what is going on. So, let K over, let us say F, be a normal extension, such that, let us 

take characteristic 0. Let K over Q be a normal extension such that the order of the Galois group 

is 8. And the Galoisgroup has the property that sigma square is 1 for all sigma in the Galois 

group.  

So the question is, find all the intermediate fields of the extension. In fact, you can take Q to F 

but make it characteristic 0 field, then this works. Okay, so the solution to this is the following. 

So first note that this is the Galois extension, since characteristic Q is 0. So that means it is 

automatically separable. It is given to be normal so it is Galois. So therefore, K colon Q, which is 



the cardinality of the Galois group, because it is a Galois extension and that is given to be 8. So 

you have degree 8 extension.  

Now let us use this very strong property of the Galois group. So let G be the Galoisgroup, I am 

going to write Galois group as G because it is convenient. Then sigma square is 1 for all sigma in 

G, this is the hypothesis given, right. This means, so basically order of elements of gamma, this 

sigma G are given like this. Order of sigma, so for sigma in G order of sigma is 2, if is not 

identity, 1 of course if it identity. Because identity also is its property but it is also equal to 

identity, so it has order 1. Bbut for every non-identity element, sigma is not equal to 1, sigma 

square is 1. So that is the order 2 element. That is an order 2 element. 
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Note that also, also note G is abelian. This is because if sigma and tow are in G, let us say, then 

sigma tow inverse is tow inverse, of course, sigma tow inverse is sigma tow, because square is 

identity means an element is its own inverse. Sigma tow is equal to sigma tow inverse, but sigma 

tow inverse in general in any group you take the product and you take inverse, you interchange 

the elements.  

So sigma tow inverse is tow inverse sigmainverse, but tow inverse is tow, sigma inverse is 

sigma. So, sigma tow is equal to tow sigma. So G is abelion. So Growth is an abeliongroup order 

8, every element has order 2, every non-identity has order 2. So hence, so this group theory fact, 



any abelion group which has this property must be isomorphic to Z naught 2Z cross Z naught 2Z 

cross Z naught 2Z.  

So this is a fact from group theory. Okay so this you can for example prove using the 

fundamental theorem for finite abelion groups, you can write them as products of certain groups, 

in this case 8 so the only possibilities are Z not 8Z or Z not 2Z cross Z not 4Z, but in all of those 

cases there will be elements whose order is not equal to 2, non-identity elements whose order is 

not equal to 2. So this is the only possibility.  
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So with this data, now let us go about finding intermediate fields. So, let L be a nontrivial 

intermediate field. So of course there are two obvious intermediate fields, K and Quarter, but we 

are interested in, right, so this is not 1 and this is not 1. So L is not K, L is not Q. Those are there, 

those are already there but what about others? 
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 So now there are two possibilities. Case 1, L colon, so we have two numbers who product is 8 

and they are both different from 1 because K is different from L and Q is different from L. So, 

the possibilities are K colon L is 4 and the other possibility is case 2, K colon L is 2. So we have 

either 2, 4 or 2 here, similarly 2 or 4 here, because only divisors of 8 are 1,2,4,8 we don’t want 1 

and 8 appear here. So, 4 and 2. If this is 4, this is 2. If this is 2, this is 4. So now let us analyses 

these. 
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In this case, L is equal K power H, where H is a subgroup of G of order 4. And in this case, L is 

K power H where H has order 2. This is all from the main theorem. So K colon L, this I will 

write one more time, maybe I will start here. If equals K power H, then K colon L, which is of 

course K power H, is cardinality. This is not in main theorem, this is our preparatory theorems 

that we proved before the main theorem. So K colon L is 4, means order of L H is 4.  

So again, see the question really should ask, find the number of such intermediate fields, because 

this is an arbitrary extension. So the question of find all the intermediate field does not really 

makes sense. After doing this, we will do a specific example of such thing where we can ask to 

find intermediate fields. So really the question is, find the number of intermediate fields. So the 

number we did for here is so then number of such L is number of subgroups of order 4.  

So number of such L here is number of subgroups of order 2. So let us do the second case first 

because it is more in some sense easy. So here subgroups of order 2 will be generated by order 2 

element. So this is really elements of order 2. So number of elements of order 2, each element 

will give a unique subgroup, right. Because if you have order 2 subgroup generated by x and 

order 2 generated by y, these are different means x equal to y. So, the only way they can differ is 

by that element. What is the number of element of order 2 in our group? That is exactly 7, 

because you have every non-identity is order 2. So there are 7, so this is easy. There are 7 such 

subgroups. 

But for order 4 you have to be a bit more work. So let me do some more notation, so G can be 

thought of as, so G is Z naught 2 cross Z naught 2. So I am going to, I mean, I don’t want to 

spend too much time here but let us start the process and I will let you work it out in detail for 

you, sir. So let me write the elements like this, 0,0,0; 1,0,0; 0,1,0; 0,0,1; 1,1,0; 1,0,1; 0,1,1; and 

finally 1,1,1. So I am going to call this 0, call this x1, call this x2, call this x3, in some sense they 

are generators. Then this will become x1 plus x2. This will become x1 plus x3. 

This will become x2 plus x3, this becomes x1 plus x2 plus x3. So it is an abelion group we are 

going to use additive notations. We are going to use this. So here HXi and their sums has order 2, 

so the seven subgroups of order 2 are going be 0 x 1 is one, 0 x 2 is another, 0 x 3 is third one 

and so on. But what are the subgroups of order 4?  
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So order 2 are clear, there are seven of them. But for order 4, see remember order 4, each of them 

has to be isomorphic to Z naught 2 cross Z naught 2, because there is no Z naught 4Z here, so 

they are all degree 2 elements. So they are all climb 4 groups. But you have to be careful in 

writing these down. So I am going to clearly list them. First you can take 0, x1, x2, x1 plus x2.  

So basically you take any twoand their sum will be a valid group. Similarly you take x1 and x3, 

you get x1 plus x3. So for some reason I have sort of messed up the notation in my notes, but 

anyway let us do that here. I am not going to do full details here anyway. So these are all distinct 

groups of order 4, right. But what else we do? We can 0, x1 and then we take some other 



element. For example, x1 plus x2. And then if you take their sum, you get x2. So this is same as 

the first one, so I do not want this. So I will take x1 plus x3, then I get x3 again. So I don’t want 

to take either of these elements.  

So maybe I will take x1, let us see, I get x1 and x2 plus x3. That appears here but that x1 is not 

here, so I get x1 plus x2 plus x3. There are four so far and let me write it here. Then I will take 0, 

I think if I take x1 I have already 1,2,3 and the remaining two elements will cover all the six 

remaining elements. x2, x1 plus x2, x3, x1 plus x3, x2 plus x3 and x1 plus x2 plus x3. So then I 

will take x2, let us say. I have written x2 with X1and x3, and I have x1 plus x2, x2 plus x3. So I 

can take x1 plus x3. So I do x1 plus x3, then I get x1 plus x2 plus x3. As you can see, this is 

different from any of the things that we have written, okay.  

Now I have three with x2, so that is already done. So I have one 2 with x3, so I will take third 

one with x3. With x3 I have covered x1 and x2, x1 plus x3, x2 plus x3. So let us take x1 plus x2. 

x1 plus x2 is not there, so I will do x1 plus x2 plus x3. So I have six of them. So is there anything 

left? So I now can take one without x1 or x2 or x3. So then I can take x1 plus x2, x2 plus x3. 

Then if I add them I will get x1 plus x3. So there are again seven of them.  

So there are seven such groups. So there are seven such intermediate fields. So let me give some 

names to this. Let us call this L1, L2, I mean, I will use prime to denote the second case. L1, L2 

to L7. I have L1 prime, L2 prime up to L7 prime. Okay, so these are all the intermediate fields so 

let us agree now that there are exactly, so 2 trivial ones, K and Q, 7 in the first case and 7 in the 

second case. So there are 16 intermediate fields.  
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Okay, so let me also try to make an attempt, I will make an attempt to draw the tower of fields. 

So you have K and you have Q here. 
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But the L ones will appear, L1 primes will appear. So let me just use my notation here, so 

actually I call this prime and this not prime. Okay. So without prime or degree 2 under Q, so 

these will appear with degree 2. 
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So, L1 prime, L2 prime, L3 prime, L4 prime, L5 prime, L6 prime, L7 prime. So before I write 

this, it is clear that there are no more and these are all different, 16 different. First of all these are 

all different because their degrees are different and the corresponding. 
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So K is of course not equal to any of the Li primes or Li’s and similarly Q is not equal to any of 

these. And any Li prime is not equal to any Lj, for degree reasons. Now among Li’s they are all 

distinct because the corresponding groups are distinct. Similarly among Li primes there are no 

common ones. So there are no more and these 16 are all distinct.  

All distinct is because of what I just said and there are no more because if you put any in 

between K and Q, it is either Q we are done in that case. K we are done in that case. Otherwise K 

colon L will be 4, or 2. If it is 4, it appears in case 1, if it is 2 it appears in case 2. So, that means 

it must be one of the 16s, so there are exactly 16 intermediate fields. So to speak we really solved 

this problem, right, find the number of intermediate fields. But I wanted to give an idea of how 

the inclusions among these works. 
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So, these are all 2. 2,2,2,2,2. So L1 prime let us say is the fixed field of the first two order group 

we take, let us say 0, x1. So, this is L1 prime. So I do not know what I am doing, but this is not 

prime, right, this is without prime. These are degree 2. So just depends on the notations that we 

are using, but let us say this is the fixed field of this. Then L1 prime and let us say L1 prime is 

the fixed field of this. So this is H1 prime and this will be K, the fixed field of x1, x2, x1 plus x2.  

So this will be contained in L1 and now depends on what L2 and L3 are. But let us say L2 is 

fixed field, so I am going to squeeze this here, 0, x2.And this is the fixed field of 0, x3. So there 

will be an inclusion here and it will be a degree 2. But there is nothing here, right. This cannot 

exist. There is no line here because 0, x3 is not contained in this. This is the application of the 

main theorem. Only where you will have an inclusion is that there is a reverse inclusion of the 

Galois, of the groups. 

 So 0, x1 is contained in this, so L1 prime is contained in this. 0, x2 is contained in this, so this 

will be contained in this. So there is nothing here, but what will this be. There will be one more 

that contains this and that would 0, x1 maybe this K power 0X1 plus x2, whatever that is, there 

will be an inclusion here. Okay and L1 prime will not be contained in any other things, so 

basically and of course underlying all of these is Q. So these are all two of course.  

So now the missing thing in this picture is what lines to put between primes and Li’s and Li 

primes, which I will, I mean, this depends on how we are calling these things.And you can prove 



that, each can prove, each Li is contained in exactly one or each Li prime is contained in exactly 

three Lj’s. Okay so each Li prime for example L1 prime is contained in L1, L2, L4 in my 

notation here. So I cannot erase this, but it should be L4. So, Lj’s, so L1 prime is contained in 

L1, L2, L4 and maybe L2 prime is contained in something else. So it depends on the notation but 

that is the picture of this. 
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Now, let me end this class with a specific example of such a thing. So let us take K to B, Q 

adjoined square root 2, square root 3, square root 5. Okay. So the first thing to check is K over Q 

is an extension satisfying the hypothesis of the problem. So this is because, first you note that, 

this I would like to do in detail because this kind of thing is important, so let me carefully check 

some of these things. 

Okay, so it has been already quite a bit of time I spent, so maybe I will just stop this class now so 

that you can start fresh with this specific example again. So let me stop this class now. In the 

next video we will work out this specific example in detail. Thank you. 


